Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Bonnesen-style inequalities for Minkowski relative geometry


Author: J. R. Sangwine-Yager
Journal: Trans. Amer. Math. Soc. 307 (1988), 373-382
MSC: Primary 52A40; Secondary 52A20
DOI: https://doi.org/10.1090/S0002-9947-1988-0936821-5
MathSciNet review: 936821
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two Bonnesen-style inequalities are obtained for the relative inradius of one convex body with respect to another in $ n$-dimensional space. Both reduce to the known planar inequality; one sharpens the relative isoperimetric inequality, the other states that a quadratic polynomial is negative at the inradius. Circumradius inequalities follow.


References [Enhancements On Off] (What's this?)

  • [1] A. D. Aleksandrov, On the theory of mixed volumes (Russian), translated by W. J. Firey, Oregon State Univ., Corvallis.
  • [2] W. Blaschke, Vorlesungen über Integralgeometrie. I, II, Hamb. Math. Einzel. 20, 22, Teubner, Leipzig, 1936-1937; reprint, Chelsea, New York, 1949.
  • [3] J. Bokowski, Eine verschärfte Ungleichung zwischen Volumen, Oberfläche und Inkugelradius im $ {R^n}$, Elem. Math. 28 (1973), 43-44. MR 0328777 (48:7119)
  • [4] J. Bokowski and E. Heil, Integral representations of quermassintegrals and Bonnesen-style inequalities, Arch. Math. (to appear) MR 855141 (88b:52008)
  • [5] G. Bol, Beweis einer Vermutung von H. Minkowski, Abh. Math. Sem. Univ. Hamburg 15 (1943), 37-56. MR 0015824 (7:474f)
  • [6] G. Bol and H. Knothe, Über konvexe Körper mit Ecken und Kanten, Arch. Math. 1 (1948-1949), 427-431. MR 0031278 (11:127b)
  • [7] T. Bonnesen, Les problèmes des isopérimètres et des isèpiphanes, Gauthier-Villars, Paris, 1929.
  • [8] G. D. Chakerian and J. R. Sangwine-Yager, A generalization of Minkowski's inequality for plane convex sets, Geom. Dedicata 8 (1979), 437-444. MR 553681 (81a:52010)
  • [9] A. Dinghas, Bemerkung zu einer Verschärfung der isoperimetrischen Ungleichung durch H. Hadwiger, Math. Nachr. 1 (1948), 284-286. MR 0029205 (10:565a)
  • [10] V. I. Diskant, A generalization of Bonnesen's inequalities, Soviet Math. Dokl. 14 (1973), no. 6, 1728-1731 (transl. of Dokl. Akad. Nauk SSSR 213 (1973), no. 3). MR 0338925 (49:3688)
  • [11] H. G. Eggleston, Convexity, Cambridge Univ. Press, Cambridge, 1969.
  • [12] J. Favard, Problèmes d'extremums relatifs aux courbes convexes. I, Ann. Sci. École Norm. Sup. 46 (1929), 345-369. MR 1509299
  • [13] -, Sur les corps convexes, J. Math. Pures Appl. (9) 12 (1933), 219-282.
  • [14] H. Flanders, A proof of Minkowski's inequality for convex curves, Amer. Math. Monthly 75 (1968), 581-593. MR 0233287 (38:1609)
  • [15] H. Hadwiger, Die isoperimetrische Ungleichung im Raum, Elem. Math. 3 (1948), 25-38. MR 0024641 (9:526a)
  • [16] -, Altes und Neues über konvexe Körper, Birkhäuser Verlag, Basel, 1955. MR 0073220 (17:401e)
  • [17] -, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin, 1957.
  • [18] R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979), 1-29. MR 519520 (80h:52013)
  • [19] J. R. Sangwine-Yager, A Bonnesen-style inradius inequality in $ 3$-space, Pacific J. Math, (to appear). MR 953506 (89f:52032)
  • [20] R. Schneider, Über Tangentialkörper der Kugel, Manuscripta Math. 23 (1978), 269-278. MR 486345 (80j:52010)
  • [21] B. Teissier, Bonnesen-type inequalities in algebraic geometry. I: Introduction to the problem, Seminar on Differential Geometry, Princeton Univ. Press, 1982, pp. 85-105. MR 645731 (83d:52010)
  • [22] J. M. Willis, Zum Verhältnis von Volumen zur Oberfläche bei konvexen Körpern, Arch. Math. 21 (1970), 557-560. MR 0278192 (43:3923)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 52A40, 52A20

Retrieve articles in all journals with MSC: 52A40, 52A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0936821-5
Keywords: Circumradius, convex body, inner parallel body, inradius, quermassintegral
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society