Applications of nonstandard models and Lebesgue measure to sequences of natural numbers

Author:
Steven C. Leth

Journal:
Trans. Amer. Math. Soc. **307** (1988), 457-468

MSC:
Primary 11B05; Secondary 03H15, 11B75, 11U10

MathSciNet review:
940212

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By use of a nonstandard model, sequences of natural numbers are associated with a collection of closed subsets of reals in a natural way. The topological and measure-theoretic properties of the associated closed sets are used to prove standard theorems and define new density functions on sequences.

**[E]**P. Erdös, Personal communication.**[EG]**P. Erdős and R. L. Graham,*Old and new problems and results in combinatorial number theory*, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 28, Université de Genève, L’Enseignement Mathématique, Geneva, 1980. MR**592420****[HR]**H. Halberstam and K. F. Roth,*Sequences. Vol. I*, Clarendon Press, Oxford, 1966. MR**0210679****[HKK]**C. Ward Henson, Matt Kaufmann, and H. Jerome Keisler,*The strength of nonstandard methods in arithmetic*, J. Symbolic Logic**49**(1984), no. 4, 1039–1058. MR**771776**, 10.2307/2274260**[HM]**Moshé Machover and Joram Hirschfeld,*Lectures on non-standard analysis*, Lecture Notes in Mathematics, Vol. 94, Springer-Verlag, Berlin-New York, 1969. MR**0249285****[K]**G. Kreisel,*Axiomatizations of nonstandard analysis that are conservative extensions of formal systems for classical standard analysis*, Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967) Holt, Rinehart and Winston, New York, 1969, pp. 93–106. MR**0238686****[Le]**Steven C. Leth,*Sequences in countable nonstandard models of the natural numbers*, Studia Logica**47**(1988), no. 3, 243–263. MR**999780**, 10.1007/BF00370555**[Lo]**Peter A. Loeb,*An introduction to nonstandard analysis and hyperfinite probability theory*, Probabilistic analysis and related topics, Vol. 2, Academic Press, New York-London, 1979, pp. 105–142. MR**556680****[M]**J. Merrill,*Some results in set theory and related fields*, Doctoral thesis, Univ. of Wisconsin, 1986.**[R]**Abraham Robinson,*Non-standard analysis*, North-Holland Publishing Co., Amsterdam, 1966. MR**0205854**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
11B05,
03H15,
11B75,
11U10

Retrieve articles in all journals with MSC: 11B05, 03H15, 11B75, 11U10

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1988-0940212-0

Article copyright:
© Copyright 1988
American Mathematical Society