Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Strong homology is not additive


Authors: S. Mardešić and A. V. Prasolov
Journal: Trans. Amer. Math. Soc. 307 (1988), 725-744
MSC: Primary 55N35
DOI: https://doi.org/10.1090/S0002-9947-1988-0940224-7
MathSciNet review: 940224
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using the continuum hypothesis (CH) we show that strong homology groups $ \overline {{H_p}} (X)$ do not satisfy Milnor's additivity axiom. Moreover, CH implies that strong homology does not have compact supports and that $ \overline {{H_p}} (X)$ need not vanish for $ p < 0$.


References [Enhancements On Off] (What's this?)

  • [1] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin and New York, 1972. MR 0365573 (51:1825)
  • [2] J. M. Cordier, Quelgues notes sur les théories d'homologie de Steenrod-Sitnikov, Manuscripta Math. 59 (1987), 35-52. MR 901248 (88m:55003)
  • [3] C. U. Jensen, Les foncteurs dérivés de $ \underleftarrow {\lim }$ et leurs applications en théorie des modules, Lecture Notes in Math., vol. 254, Springer-Verlag, Berlin and New York, 1972. MR 0407091 (53:10874)
  • [4] Ju. T. Lisica, Duality theorems and dual shape and coshape categories, Dokl. Akad. Nauk SSSR 263 (1982), 532-536. (Russian) MR 650357 (83m:55015)
  • [5] Ju. T. Lisica and S. Mardešić, Steenrod-Sitnikov homology for arbitrary spaces, Bull. Amer. Math. Soc. (N.S.) 9 (1983), 207-210. MR 707958 (85a:55007)
  • [6] -, Coherent prohomotopy and strong shape theory, Glasnik Mat. 19(39) (1984), 335-399. MR 790021 (87h:55005)
  • [7] -, Strong homology of inverse systems of spaces. I, Topology Appl. 19 (1985), 29-43. MR 786079 (86j:55005a)
  • [8] -, Strong homology of inverse systems of spaces. II, Topology Appl. 19 (1985), 45-64. MR 786080 (86j:55005b)
  • [9] -, Strong homology of inverse systems. III, Topology Appl. 20 (1985), 29-37. MR 798442 (86j:55005c)
  • [10] -, Steenrod homology, Geometric and Algebraic Topology, Banach Center Publ., vol. 18, PWN, Warsaw, 1986, pp. 329-343. MR 925874 (89e:55009)
  • [11] S. Mac Lane, Homology, Springer-Verlag, Berlin and New York, 1963. MR 1344215 (96d:18001)
  • [12] S. Mardešić, Approximate polyhedra, resolutions of maps and shape fibrations, Fund. Math. 114 (1981), 53-78. MR 643305 (83d:55016)
  • [13] -, A note on strong homology of inverse systems, Tsukuba J. Math. 11 (1987), 177-197. MR 899730 (89c:55006)
  • [14] S. Mardešić and J. Segal, Shape theory, North-Holland, Amsterdam, 1982. MR 676973 (84b:55020)
  • [15] S. Mardešić and T. Watanabe, Strong homology and dimension, Topology Appl. 29 (1988). MR 949368 (89h:55005)
  • [16] W. S. Massey, Homology and cohomology theory, M. Dekker, New York and Basel, 1978. MR 0488016 (58:7594)
  • [17] L. D. Mdzinarishvili, On total homology, Geometric and Algebraic Topology, Banach Center Publ., vol. 18, PWN, Warsaw, 1986, pp. 345-361. MR 925875 (88m:55004)
  • [18] J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341. MR 0159327 (28:2544)
  • [19] Z. Miminoshvili, On the sequence of exact and half-exact homologies of arbitrary spaces, Soobšč. Akad. Nauk Gruzin. SSR 113, No. 1 (1984), 41-44. (Russian) MR 780701 (86e:55005)
  • [20] T. Watanabe, Čech homology, Steenrod homology and strong homology. I, Glasnik Mat. 22(42) (1987), 187-238. MR 940106 (89e:55010)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55N35

Retrieve articles in all journals with MSC: 55N35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0940224-7
Keywords: Strong homology, Steenrod homology, additivity, derived functors, inverse limits, derived limits, strong shape
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society