Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Products of involution classes in infinite symmetric groups


Author: Gadi Moran
Journal: Trans. Amer. Math. Soc. 307 (1988), 745-762
MSC: Primary 20B30
DOI: https://doi.org/10.1090/S0002-9947-1988-0940225-9
MathSciNet review: 940225
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be an infinite set. Denote by $ {S_A}$ the group of all permutations of $ A$, and let $ {R_i}$, denote the class of involutions of $ A$ moving $ \vert A\vert$ elements and fixing $ i$ elements $ (0 \leqslant i \leqslant \vert A\vert)$. The products $ {R_i}{R_j}$ were determined in [M1]. In this article we treat the products $ {R_{{i_1}}} \cdots {R_{{i_n}}}$ for $ n \geqslant 3$. Let INF denote the set of permutations in $ {S_A}$ moving infinitely many elements. We show:

(1) $ {R_{{i_1}}} \cdots {R_{{i_n}}} = {S_A}$ for $ n \geqslant 4$.

(2)(a) $ {R_i}{R_j}{R_k} = \operatorname{INF} $ if $ \{ i,\,j,\,k\} $ contains two integers of different parity; (b) $ {R_i}{R_j}{R_k} = {S_A}$ if $ i + j + k > 0$ and all integers in $ \{ i,\,j,\,k\} $ have the same parity.

(3) $ R_0^3 = {S_A}\backslash E$, where $ \theta \in E$ iff $ \theta $ satisfies one of the following three conditions:

(i) $ \theta $ moves precisely three elements.

(ii) $ \theta $ moves precisely five elements.

(iii) $ \theta $ moves precisely seven elements and has order $ 12$.

These results were announced in 1973 in [MO]. (1) and part of (2)(a) were generalized recently by Droste [D1, D2].


References [Enhancements On Off] (What's this?)

  • [B] E. Bertram, On a theorem of Schreier and Ulam for countable permutations, J. Algebra 24 (1973), 316-322. MR 0308276 (46:7390)
  • [Bo] G. Boccara, Cycles comme produit de deux permutations de classes donnees, Discrete Math. 38 (1982), 129-142. MR 676530 (84e:20007)
  • [D1] M. Droste, Products of conjugacy classes of the infinite symmetric groups, Discrete Math. 47 (1983), 35-48. MR 720606 (85b:20002)
  • [D2] -, Cubes of conjugacy classes covering the infinite symmetric groups, Trans. Amer. Math. Soc. 288 (1985), 381-393. MR 773066 (86g:20003)
  • [D3] -, Classes of universal words for the infinite symmetric groups, Algebra Universalis 20 (1985), 205-216. MR 806615 (87d:20049)
  • [DG] M. Droste and R. Göbel, On a theorem of Baer, Schreier and Ulam for permutations, J. Algebra 58 (1979), 282-290. MR 540639 (80g:20008)
  • [Dv] Y. Dvir, Covering properties of permutation groups, Products of Conjugacy Classes in Groups (Z. Arad and M. Herzog, eds.), Lecture Notes in Math., vol. 1112, Springer-Verlag, 1985. MR 783067 (87h:20001)
  • [G] A. B. Gray, Infinite symmetric and monomial groups, Ph.D. Thesis, New Mexico State Univ., Las Cruces, N.M., 1960.
  • [MO] G. Moran, The algebra of reflections of an infinite set, Notices Amer. Math. Soc. 73T (1973), A193.
  • [M1] -, The product of two reflection classes of the symmetric group, Discrete Math. 15 (1976), 63-77. MR 0412297 (54:423)
  • [M2] -, Reflection classes whose cubes cover the alternating group, J. Combin. Theory Ser. A 21 (1976), 1-19. MR 0414673 (54:2769)
  • [M3] -, Permutations as products of $ k$ conjugate involutions, J. Combin. Theory Ser. A 19 (1975), 240-242. MR 0379635 (52:540)
  • [M4] -, Trees and the bireflection property, Israel J. Math. 41 (1982), 244-260. MR 657859 (83j:05030)
  • [M5] -, Of planar Eulerian graphs and permutations, Trans. Amer. Math. Soc. 287 (1985), 323-341. MR 766222 (86i:05081)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20B30

Retrieve articles in all journals with MSC: 20B30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0940225-9
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society