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GENERALIZED QUOTIENTS IN COXETER GROUPS

ANDERS BJORNER AND MICHELLE L. WACHS

ABSTRACT. For (W, S) a Coxeter group, we study sets of the form

W/V = {w e W | l{wv) = l(w) + l(v) for all v e V},

where V C W. Such sets W/V, here called generalized quotients, are shown to

have much of the rich combinatorial structure under Bruhat order that has

previously been known only for the case when VCS (i.e., for minimal coset

representatives modulo a parabolic subgroup). We show that Bruhat intervals

in W/V, for general V C W, are lexicographically shellable. The Mobius

function on W/V under Bruhat order takes values in { — 1,0, +1}.

For finite groups W, generalized quotients are the same thing as lower

intervals in the weak order. This is, however, in general not true. Connections

with the weak order are explored and it is shown that W/V is always a complete

meet-semilattice and a convex order ideal as a subset of W under weak order.

Descent classes Dj = {w e W \ l{ws) < l(w) o s 6 I, for all s G S},

I C S, are also analyzed using generalized quotients. It is shown that each

descent class, as a poset under Bruhat order or weak order, is isomorphic to a

generalized quotient under the corresponding ordering.

The latter half of the paper is devoted to the symmetric group and to

the study of some specific examples of generalized quotients which arise in

combinatorics. For instance, the set of standard Young tableaux of a fixed

shape or the set of linear extensions of a rooted forest, suitably interpreted,

form generalized quotients. We prove a factorization result for the quotients

that come from rooted forests, which shows that algebraically these quotients

behave as a system of minimal "coset" representatives of a subset which is in

general not a subgroup. We also study the rank generating function for certain

quotients in the symmetric group.

1. Introduction. This paper is concerned with the combinatorial study of

Coxeter groups under two well-known partial orderings, Bruhat order and weak

order. We introduce and study a class of subsets of Coxeter groups, which as ordered

sets exhibit many of the same structural properties as the systems of minimal length

coset representatives modulo parabolic subgroups.

Some familiarity with Coxeter groups will be assumed, such as what can be

found in the first few pages of [12]. The basic properties of Bruhat and weak order

will be reviewed in the next section.

Throughout this paper (W, S) will denote a Coxeter group W with distinguished

generating set S. The length l(w) of w E W is the least q such that w = sys2 ■ ■ ■ sq,
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with st E S. Such a minimum length expression is called a reduced expression for

w. Subgroups Wj generated by subsets J of 5 are called parabolic subgroups.

For J ES, let

(1.1) WJ = {w E W | l(ws) = l(w) + 1 for all s E J}.

We will call such subsets WJ ordinary quotients of W. One basic fact about WJ

(cf. [12, p. 37]) is that every w EW can be uniquely factorized w = u ■ v, so that

u E WJ and v E Wj. Furthermore, this factorization satisfies l(w) = l(u) + l(v). In

particular, WJ intersects each left coset of Wj in its unique element of minimum

length.

We now generalize this concept as follows. For V C W, let

(1.2) W/V = {w E W | l(wv) = l(w) + l(v) for all v E V}.

The subsets of W of the form W/V will be called generalized quotients . The name

is motivated by the fact that for J C S we have: W/J = WJ = W/Wj. It will be

shown that generalized quotients have many structural properties in common with

ordinary quotients, and that they are helpful for the study of some other classes of

subsets in Coxeter groups, such as descent classes and classes of tableau words and

linear extensions of posets in the symmetric group.

The paper is organized as follows.

In §2 we review some basic facts about Bruhat order and weak order on Coxeter

groups.

§3 is devoted to the study of generalized quotients W/V as ordered sets under

Bruhat order. It is shown that W/V has the following chain property, if u < w

in W/V then there exists a chain u = u0 < uy < ■ ■ ■ < uk = w in W/V such

that l(ui) = l(u) + i, for 1 < i < k. Also, if W/V is finite then it has a unique

maximal element. The main result of §3 is that every Bruhat interval [u, w] in

W/V is lexicographically shellable (cf. Definition 3.1). From this combinatorial

property we deduce that the simplicial complex of chains in a nonempty open

Bruhat interval (u,w) of W/V triangulates a sphere or a ball, and is therefore

Cohen-Macaulay. This was previously shown for ordinary quotients by the authors

in [8] . It also follows that the Mobius function p(u,w) on W/V takes values

in { —1,0,+1}, extending a result of Verma [23] and Deodhar [13] for ordinary

quotients.

In §4 we explore relationships between generalized quotients and intervals in the

left weak ordering of the full Coxeter group. We show that for finite Coxeter groups

the following three classes of subsets coincide: (i) generalized quotients W/V for

arbitrary V EW, (ii) generalized quotients W/{v} for singleton {v} E W, (iii) lower

left intervals [e, u]i. For infinite W, and especially for infinite W/V, the situation

becomes more complicated; there are lower left intervals which are not generalized

quotients (and, of course, conversely) and there are generalized, quotients which

cannot be realized by a singleton V. We show that as an ordered set under left

weak order, W/V is a complete meet-semilattice, and if finite is a lattice. For the

full group W this had earlier been shown by Bjorner [5, 7].

Let T = {wsw'1 | s ES,wE W}, and for A C T define

(1.3) WA = {wEW \ l(wt) > l(w) for all t E A}.
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Since SET, this extends the definition (1.1) of an ordinary quotient in a different

way than (1.2). In §5 we consider such "alternative" generalized quotients WA. It

is shown that every generalized quotient W/V and every lower left interval [e,u]i

is of the form WA, for some A ET. We leave open the question of whether some of

the properties we prove for W/V extend to the more general WA. In an appendix

(§10) we discuss a notion of convexity and a theorem of J. Tits [22], which in our

language says that a subset of W is of the form IK'4 if and only if it is a convex

order ideal in the left weak ordering of W.

For I E J E S, define the descent class

DJ = {wEW\sEl=> l(ws) < l(w) and s E S - J => l(ws) > l(w)}.

Again, the ordinary quotients are special cases: WJ = D0 . We show in §6 that

every descent class Dj is isomorphic to a generalized quotient under both Bruhat

order and left weak order. Hence, the structural properties shown in §§3 and 4 hold

also for descent classes, as ordered sets. We show that descent classes D\ break up

further into smaller pieces, each isomorphic to a generalized quotient. Such parti-

tionings are induced by J, for all I E J C S. Consequently, the Bruhat ordering of

W can be nontrivially partitioned into disjoint lexicographically shellable subposets

in a multitude of ways. We study mapping and embedding properties among the

blocks of such partitions.

The last 3 sections are devoted to the symmetric group, and in particular to the

study of some specific generalized quotients in 5?n which arise by combinatorial

constructions. First, let X/p be a skew shape and consider the set ^/M of all

standard Young tableaux of shape X/p. Reading the tableaux row by row (other

reading orders are also possible) we get a set w(^7x/p) of permutations, the "tableau

words". We show that w(^/M) is a generalized quotient. Second, let <p be a

planar forest and consider the set SF^ of all standard labelings of <p (i.e., bijective

labelings of the nodes xy,x2,... ,xn of <p with the integers 1,2,... ,n, such that the

label of any node is greater than those of all its children). Reading the standard

labeling in postorder (other reading orders are also possible) we get a set w(^f,p) of

permutations, which again forms a generalized quotient. We call sets of the forms

w(^\/n) and w(.i^>), tableau quotients and forest quotients, respectively.

The permutations in an ordinary quotient WJ in the symmetric group can be

characterized either as being piecewise monotone (i.e., having ascents in certain

specified positions), or else as being permutations of multisets or "shuffles". A

descent class Dj in S^n consists of those permutations having descents in the po-

sitions specified by / and ascents in the positions specified by S — J. As a tableau

quotient, WJ corresponds to a shape with nonoverlapping rows, and Dj to a shape

with rows which overlap in at most one box (for "French" reading order, cf. §7).

As a forest quotient, WJ corresponds to a forest consisting only of linear trees.

Tableau quotients and forest quotients are studied in §§7 and 8, respectively. A

property of forest quotients w(f^p), which is particularly interesting, is that they

split the symmetric group. By this we mean that given a planar forest <ponn nodes

there exists a subset Vv C ,9*n (actually, V^ is an interval in right weak order),

such that every w E S?n has a unique factorization w = uv, where u E w(,9^) and

v E Vv. Furthermore, then also l(w) = l(u) + l(v). Hence, forest quotients behave



4 ANDERS BJORNER AND M. L. WACHS

algebraically very much like ordinary quotients. They act as a system of minimal

"coset" representatives of a subset which is in general not a subgroup.

For A E S"n, let A(q) = Yll^wK with summation over all w E A. A well-known

result, due to MacMahon [1, p. 41], is that for ordinary quotients WJ(q) equals

a ^-multinomial coefficient. In §9 we study the polynomials A(q) for generalized

quotients in the symmetric group. For forest quotients A = wffip), we show that A

is rank symmetric and provide an explicit formula for A(q), which is a ^-analogue

of Knuth's hook-length formula for planar forests. For forests with linear trees (i.e.,

ordinary quotients), it reduces to MacMahon's ^-multinomial formula. For descent

classes A = Dj, we establish a determinantal formula for A(q), which for the case

1 = 0 specializes to the q-multinomial coefficient, for q = 1 and I = J to another

result of MacMahon, and for I = J to a formula of Stanley. Finally, we show that

certain left intervals in S?n related to forest quotients have the symmetric chain

decomposition property as posets under Bruhat order. This extends the known

fact that the parabolic subgroups (or Young subgroups, as they are often called for

S^n) have symmetric chain decompositions.

2. Background on the partial orderings of Coxeter groups. We begin by

reviewing the definitions of Bruhat order and weak order. Let (W, S) be a Coxeter

group, and let T be the set of conjugates of S, i.e., T = {wsw-1 [ w E W, s E S}.

For u,w E W we say that u precedes w in Bruhat order, written u <b w, if there

exist ty,t2,... ,tm ET such that £(£j£j_i ■ ■ -tyu) > l(U-i ■ ■ -tyu) for i = 1,2,... ,m

and tmtm-y ■ ■ tyu = w. Similarly we say u precedes w in left order, written

u <l w, if there exist Sy,s2,... ,sm E S such that Ifasi-i • • ■ syu) = l(u) + i for

i = 1,2,..., m and smsm_i • ■ • syu = w. If in the definition of left order we place

the generators Sj to the right of u rather than to the left we define a partial order

relation that we call right order and denote by <r.

It is obvious that u <l w implies u <b w. It is also true that u <r w implies

u <b w, since us = usu~x ■ u. Left order and right order are clearly isomorphic

partial orderings. They are sometimes referred to in the literature as weak (Bruhat)

order; and Bruhat order is also known as strong order. We will use the term weak

order when there is no need to distinguish between left and right order. For an

expository discussion of Bruhat order and weak order on Coxeter groups see [5].

For u,v E W and u <L v the set {w E W \ u <l w <l v} will be called a left

interval and will be denoted by [u, v]r,. A lower left interval is a left interval of the

form [e,v]L where e is the identity element of W. We define Bruhat interval [u,v]b

and right interval [u,v]r similarly. Other poset constructs will also be preceded by

the terms "left", "right", or "Bruhat", to distinguish between the respective partial

orderings. For example, a left maximal element of a subset U of W is an element

of U that is maximal in the left order on U.

We now review some well-known properties of Bruhat order which are important

tools in this paper. Proofs can be found e.g. in [13]. For each w E W, let Tw =

{tET\tw <B w}.

STRONG EXCHANGE PROPERTY. For w E W and w = sys2---sk, st E S,

if t E Tw then tw = sys2 ■ ■ ■ st ■ ■ ■ sk (sz deleted) for some i = 1, 2,..., k. Fur-

thermore, if sys2 ■ ■ ■ sk is a reduced expression then i is uniquely determined and

Tw = {sys2 ■ ■ ■ SiSi-i ■ • • si | i = 1,2,..., k}.
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A consequence of the strong exchange property is the following characterization

of Bruhat order.

SUBWORD PROPERTY. Let v = sys2 ■ ■ ■ sq be a reduced expression. Then

u <b v if and only if there is a reduced expression for u which is a subword of

sys2- ■■ sq, i.e., u = Si, Si2 ■ ■ ■ stj where 1 < iy <i2 < ■ ■ ■ < ij < q.

The following is a corollary of the subword property.

LIFTING PROPERTY. If su >l u and sv >l v, then the following are equivalent:

(i) v >B u,

(ii) sv >B u,

(iii) sv >b su.

It is well known that the weak orders and Bruhat order have the following basic

combinatorial properties:

(1) The identity e is the minimum element in all three orders.

(2) Under all three orders W is ranked, and the poset rank function is the same

as the group-theoretic length function I. (By a ranked poset we mean a poset P

such that for each x E P all maximal chains in {y E P | y < x} have the same finite

length, called the rank of x.)

(3) When W is finite, W has an element w0 which is maximum in all three orders.

Recall that a graded poset is a ranked poset with a minimum and a maximum

element (usually denoted 0 and T). Hence a finite Coxeter group W is graded as

a poset under all three orderings. For a finite parabolic subgroup Wj, we shall

denote its maximum element by wo(J). This maximum is characterized by the fol-

lowing well-known property, cf. [12, p. 43]. (The nontrivial part, the "if" direction,

happens to also be a consequence of Theorem 4.1 below.)

PROPOSITION 2.1. Let J ES and v EWj. Then Wj is finite and v = w0(J)

if and only if sv <l v for all s E J.    U

The following lemmas and propositions will also be needed in the sections that

follow.

LEMMA 2.2. Let a,b,u E W and l(au) = 1(a) + l(u) and l(bu) = 1(b) +l(u).

Then au <b bu if and only if a <b b.

PROOF. The fact that a <B b implies au <b bu follows from the subword

property. We shall use induction on l(u) to prove the converse. For l(u) = 0 the

result is trivial. Assume l(u) > 0 and au <b bu. Then u = u's for some s E S,

where /(«') = l(u) — 1. Since au' <r au and bu' </j bu, the lifting property implies

that au' <b bu'. It follows by induction that a <b b.    □

Note that Lemma 2.2 holds trivially for the left order. An immediate consequence

of Lemma 2.2 is the following proposition.

PROPOSITION 2.3. Let u,v E W and u <L v. Then the map <p:[u,v]L —>

[e,vu~l]i defined by <p(w) = wu~* is an isomorphism under Bruhat order and left

order.    □

Proposition 2.3 shows that any analysis of left order or Bruhat order on left

intervals can be restricted to lower left intervals.
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We shall make use of the following notation: For w E W let (w) denote any

reduced expression for w. Let (u)(v) denote the concatenation of reduced expres-

sions for u and v. Saying that (u)(v) is reduced is a convenient way of saying that

l(uv) =l(u) + l(v).

LEMMA 2.4. Let u, v E W. Suppose for some t ET that tu >B u but tuv <b

uv. Then there exists v <b v such that tuv = uv. Furthermore, if (u)(v) is reduced

and t E S then l(v) = l(v) — 1 and (u)(v) is reduced.

PROOF. By the strong exchange and subword properties either tuv = uv or

tuv = uv, where u <b u or v <b v, respectively. The first case would produce the

contradiction tu = u <b u. Hence, tuv = uv. Now, if (u)(v) is reduced and t E S

then

l(u) + l(v) > l(u) + l(v) > l(uv) = l(tuv) = l(uv) - 1 = l(u) + l(v) - 1,

from which the rest follows.    □

The following characterization of the right ordering is known from [5]. We in-

clude a proof here for completeness.

PROPOSITION 2.5.   For all u,w EW, u <Rw if and only ifTu C Tw.

PROOF. (=>) Choose any reduced expression sys2- ■ ■ sk for u. Since u <r w,

there is a reduced expression of the form Sys2 ■ ■ ■ sksk+y ■ ■ ■ Sj for w. By the strong

exchange property

Tu = {SyS2---SiSi-y ---Sy \ i = 1,2,..., k}

Q {SlS2---8,S,_i   -Sy \i= 1,2,...,/} =TW.

(<=) Let u = sys2 ■ ■ ■ sk be a reduced expression and let ti = sys2 ■ ■ ■ SjSi_i • • ■ Sy

for i = 1,2, ...,k. Then by the strong exchange property, Tu = {ty,t2,... ,tk}

and the ti are distinct. Hence, ti E Tw for all i = 1,2,...,k. We shall prove,

by induction on i, that sys2 ■ ■ ■ sz <r w holds for all i = 0,1,2,... ,k. Clearly,

the assertion is true for i = 0. Suppose it is true for i — 1 where 1 < i < k.

This means that sys2- ■ ■ Si-yv = w where sys2 ■ ■ ■ Si^y(v) is reduced. Clearly,

tiSys2 ■ ■ ■ Si-y = sys2 ■ ■ ■ 8{ >b SyS2 ■ ■ ■ Si-y. Since we also have tiW <b w, Lemma

2.4 implies that tiW = sys2 ■ ■ ■ Sj-i? where v <b v. It follows that

W = titiW = tiSyS2 ■ ■ ■ Si-yV = SyS2 • • • SiV.

We have

l(v) + i > l(w) = l(v) + i - 1 > l(v) + i,

from which it follows that sys2 ■ ■ ■ st(v) is reduced.  Hence, sys2- ■ ■ Si <r w.  We

may now conclude that sys2 ■ ■ ■ sk <r w, as desired.    □

It is an elementary observation that combinatorial facts about reduced decom-

positions, partial orderings, etc., in a Coxeter group can be mirrored into corre-

sponding "dual" facts by systematically reversing the ordering of expressions and

interchanging left and right. For example, all properties, lemmas and propositions

mentioned in this section have such dual counterparts (except that the subword

property is self-dual). Formally, this duality can be achieved by passing to inverse

elements. We shall use this repeatedly without further special mention.
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3. Bruhat order on generalized quotients. In this section some properties

of Bruhat order on full Coxeter groups are extended to generalized quotients, W/V.

It is an immediate consequence of the definition that e is the minimum element of

W/V. The fact that W/V is ranked under Bruhat order is, however, not immedi-

ate. We will prove this and establish lexicographic shellability at the same time.

Lexicographic shellability was shown for all ordinary quotients by the authors in

[81.
Let P be a graded poset of length r, i.e., the rank of the maximal element 1 is r.

The symbol —> shall be used to denote the covering relation in P, i.e., a —► b means

that a covers b in P. To each maximal chain m: 1 = xq —* xy —* • • • —+ xr = 0 of

P, we assign a label sequence X(m) = (Xy(m), X2(m),...,Xr(m)) E ZT satisfying

the following condition: If two maximal chains m and m' coincide along their

first k edges (i.e., top fc edges in the Hasse diagram) then Xi(m) = Aj(m') for

i = 1,2,..., fc. If [x, y] is an interval and c is an unrefinable chain from y to 1,

the pair ([i,y],c) will be called a rooted interval. A well-defined labeling Ac of the

maximal chains of [x, y] is induced by the chain c. Indeed, if b is a maximal chain

of [x,y] then A£(6) = Ar_r(y)+i(m) for i = 1,2,... ,r(y) — r(x), where m is any

maximal chain of P which contains c and b, and r(x) and r(y) are the respective

ranks of x and y.

DEFINITION 3.1. A labeling A of maximal chains of a graded poset P as above

is a chain lexicographic labeling (CL-labeling) if for every rooted interval ([x,y],c)

in P,

(i) there is a unique maximal chain a in [x,y] which is increasing, i.e., Xy(a) <

Xc2(a) < ■ ■ ■ < Xcr{y)_r{x}(a), and

(ii) if b is any other maximal chain in [x,y] then the label sequence Xc(a) is

lexicographically smaller than |he label sequence Xc(b).

The poset P is said to be chain lexicographically shellable (CL-shellable) if it admits

a CL-labeling. See [4, 8, 9] for further details concerning this concept.

We now describe the CL-labeling of Bruhat intervals of Coxeter groups that ap-

pears in [8]. Let u <b w and let sys2 ■ ■ ■ sq be a reduced expression for w. Suppose

that l(w)—l(u) = r and let m: w —► wy —+ w2 —►•••—+ wr = u be a Bruhat maximal

chain of [u,w]b- We assign label sequence X(m) = (Xy(m), X2(m),...,Xr(m)) to

m as follows: By the strong exchange property Wy = tyw = sys2 ■ ■ ■ s,; • • • sq where

the deleted generator Si is uniquely determined. Let Xy(m) = i. Now repeat the

process. After fc deletions we have reached wk and obtained a uniquely determined

subword expression wk = Sj,Sj2 ■•■Sjq_k, 1 < jy < j2 < ■■■ < jq-k < q. Again

we have wk+y = tk+ywk — sj,Sj2 •■■Sji •••Sj k where the deleted generator is

uniquely determined. Let Xk+y(m) = j,. Hence the idea is to label by the positions

of the generators which are successively deleted from the chosen reduced expression

for w as we go down the maximal chain from w to u. We shall call this labeling

the subword labeling of[u,w]B induced by the reduced expression for w. Note that

different reduced expressions for w in general induce different subword labelings of

[u,w]B-

EXAMPLE. The subword labeling of the symmetric group 5^, induced by the

reduced expression aba, where a and b are the adjacent transpositions (1, 2) and
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(2, 3), respectively, is given by

X(aba -+ ba —> a —► e) = (1,2,3),

X(aba -» ba -* b -* e) = (1,3,2),

X(aba —► ab —> a —► e) = (3,2,1),

A(aoa -» a6 -» 6 -» e) = (3,1,2).

THEOREM 3.2 [8]. For anj/ Coxeter group W, if u <b w then the subword

labeling of [u,w]b induced by any reduced expression for w is a CL-labeling.    □

To extend this result to generalized quotients we make use of the following

lemma, cf. [4, Proposition 2.8].

LEMMA 3.3. Suppose that P is CL-shellable with CL-labeling X. Suppose that
Q is a subposet of P such that

(i) 0,1 EQ, and
(ii) for every rooted interval ([x,y],c) of P such that x,y E Q and c E Q, the

unique increasing maximal chain of[x,y] lies entirely in Q.

Then Q under the inherited order is a CL-shellable poset of equal rank, with CL-

labeling the restriction of X.

PROOF. The verification is straightforward.    □

THEOREM 3.4. Let W/V be a generalized quotient, V EW. Suppose u,w E

W/V and u <b w. Then for the subword labeling of [u, w]b induced by any reduced

expression for w, the unique increasing maximal chain of [u,w]b lies entirely in

W/V.

PROOF. Fix a reduced expression sys2 ■ ■ ■ sq for w. Let m be the unique in-

creasing maximal chain of [u, w]b in the subword labeling induced by sys2 ■ ■ ■ sq.

We shall show by induction on l(z) that z E W/V for all z Em. If l(z) = l(u) then

z = u and hence z E W/V. Suppose now that l(z) > l(u) and z' E W/V for all

z' Em such that l(z') < l(z). Assume that z $. W/V. Then there is some v E V

such that (z)(v) is not reduced. Let v = vysv2 where (vy)s(v2) and (z)(vy) are

reduced and (z)(vy)s is not reduced. It follows that zvys <r zvy.

Let z be the element of m which is covered by z. Then by the induction hy-

pothesis, (z)(v) is reduced which implies that (z)(vy)s is also reduced. We have

zvys >r zvy and zvys <r zvy. Since z <b z, the subword property implies that

zvy <b zvy. By the lifting property we have zvy <b zvys. Since l(zvy) = l(zvy) — 1,

we conclude that zvy = zvys.

Since m has increasing labels, it follows that

ZVy = Sy ■••«,•, •■•S,2 •••%_, • ■ ■ SqVy

and

ZVy  = Sy ■ ■ ■ Sj,  • • ■ S,2 • ■ • Sik_ ,  • ■ ■ Slk ■ ■ ■ SqVy ,

where fc — 1 = l(w) — l(z). Since zvy = zvys, we can conclude that

S = Vl~iSqSq-y • • ■ SlkS%k + y ■ ■ ■ SqVy.

Consequently, wvys = sys2 ■ ■ ■ Sik ■ ■ ■ sqvy. This implies that (w)(vy)s is not reduced

which in turn implies that (w)(v) is not reduced. Since this contradicts the fact

that w E W/V, we are done.    □
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COROLLARY 3.5.   Bruhat order on W/V has the chain property.    D

The chain property (as defined in §1) directly implies that W/V is a ranked poset

whose order-theoretic rank function coincides with the group-theoretic length func-

tion. For ordinary quotients this was previously shown by Deodhar [13, Corollary

3.8] using a completely different argument.

COROLLARY 3.6. Every Bruhat interval of W/V is CL-shellable under Bruhat

order.

PROOF. Bruhat intervals of W/V have the form [a, b]Br\W/V, where a,bE W/V

and a <b b. Let P be the poset [a, 6]b under Bruhat order and let Q be the subposet

[a, 6]s D W/V. We shall use Lemma 3.3 to conclude that Q is CL-shellable.

Clearly Q satisfies (i) of Lemma 3.3. Note (as in [8]) that any labeling of a

rooted interval, ([u,w]b,c), of P induced by a subword labeling of P is itself a

subword labeling of [u,w]b- Therefore by Theorem 3.4, if u, w E W/V then the

unique increasing maximal chain of [u,tu]s for this labeling lies in W/V. It follows

that Q satisfies (ii) of Lemma 3.3. Hence by Lemma 3.3, Q is CL-shellable.     □

Some notable consequences of the shellability of ordinary quotients are discussed

in [8]. These results now hold for generalized quotients as well and their proofs go

through exactly as in [8]. We shall merely state some of these results here:

(1) Let p be the Mobius function for Bruhat order on W/V.

If u, w E W/V and u <b w then

(•(_!)((»)-((«),    if[u,w]BCW/V,
u(u,w) = <

t 0, otherwise.

(2) Let u, w E W/V, u <B w, and l(w) - l(u) = d + 2 > 2. Then the simplicial

complex of Bruhat chains of the open interval (u, w)b n W/V is a triangulation of

a d-sphere if [u, w]b Q W/V and is a triangulation of a <i-cell otherwise.

(3) The Stanley-Reisner ring of the simplicial complex in (2) is Cohen-Macaulay;

and it is Gorenstein if [u,w]b Q W/V.

Having established that generalized quotients are ranked under Bruhat order,

our next goal is to show that finite generalized quotients have a maximum element.

We shall, in fact, prove something slightly more general which holds for infinite as

well as for finite generalized quotients.

THEOREM 3.7. Let u,w E W/V and let z be a minimal upper bound of u and

w in Bruhat order (i.e., z >b u,w and if z >b y >b u,w then z = y). Then

zEW/V.

PROOF. Suppose z £ W/V. Then (z)(v) is not reduced for some v EV. Let

v = vysv2 where (vy)s(v2) and (z)(vy) are reduced and (z)(vy)s is not reduced.

Since (vy)s is reduced, Lemma 2.4 implies that zvys = zvy where z <b z and

(z)(vy) is reduced.

It follows from u,w E W/V that (u)(vy) and (w)(vy) are reduced and that

uvys >r uvy and wvys >r wvy. By Lemma 2.2, zvy >b uvy and zvy >b wv{.

Hence by the lifting property, zvy = zvys >b uvy and zvy = zvys >b wvy. It now

follows from Lemma 2.2 that z >b u,w. But this contradicts the minimality of z.

Therefore z E W/V.    □

A poset P is said to be directed if every pair of elements has a common upper

bound.
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COROLLARY 3.8.   Bruhat order on W/V is a directed poset.

PROOF. This follows from Theorem 3.7 and the fact that W is a directed poset

under Bruhat order [9, Lemma 6.4]. It is also a consequence of Theorem 4.2.    D

COROLLARY 3.9. If W/V is finite then W/V has a maximum element under

Bruhat order. Hence W/V is a graded CL-shellable poset under Bruhat order.    Q

An interesting property of Bruhat order on ordinary quotients and parabolic

subgroups in finite W is that they are isomorphic to their duals (see [21, p. 181]).

This does not, however, hold for all generalized quotients. A finite parabolic sub-

group Wj satisfies the condition that its maximum element wq(J) is an involution,

and an ordinary quotient WJ, in finite W, satisfies the condition that its maxi-

mum element Wq = woWo(J) is a product of wq and an involution. It turns out

that either one of these conditions on the maximum element is all that is required

to guarantee that a generalized quotient is isomorphic to its dual. Since in the

next section we shall see that all finite generalized quotients are actually lower left

intervals, we shall give the result for lower left intervals.

THEOREM 3.10. If v E W is an involution then [e,v][, is isomorphic to its

dual under both Bruhat and left order. Moreover, ifW is finite then [e, u>ov]i and

[e, vwo]l ore also isomorphic to their duals.

PROOF. Suppose that x <i v, or equivalently, l(vx~~l) + l(x) = l(v). Since

(xv)~l — vx~x, we get l(x~1) + l(xv) = l(v). This means that the mapping x —* xv

permutes the interval [e,v]r, so that l(xv) = l(v) — l(x) for all x E [e,v]r,. Ii

x,y E [e, v]l and y = tx >b x, t ET, it follows that yv = txv <b xv. Since Bruhat

order is generated by such relations x <b tx, we conclude that x <b y if and only

if xv >b yv in [e, u]l. The argument for left order is similar.

For any x E W, let <px : W —► W be the map <Px(w) — wx-1 and let tpx: W —> W

be the map <px(w) = x~lw. By Proposition 2.3, for x <l y, the restriction of

<px is an isomorphism from [z,t/]L to [e,yx~1]i under Bruhat and left order. In

the finite case, the maps <pWo and <pWo are well-known antiautomorphisms of W

under both orders (for 0Wo this is a special case of the preceding paragraph).

Hence, the restriction of the map <pv o <pWo is an antiautomorphism of [e, wqv]t,,

and the restriction of <pWo0<Pwd is an isomorphism from [e,vwq]l to [e,wov]l- This

completes the proof.    □

4. Relationships with the weak order. It was shown by Bjorner [5, 7] that

every Coxeter group under the weak order is a complete meet-semilattice and is a

lattice if the group is finite. We shall extend this result to generalized quotients.

THEOREM 4.1. Suppose W/V is a generalized quotient. IfW /V is infinite then

W/V, under left order, is a complete meet-semilattice with no maximal elements.

If W/V is finite then W/V is a lower left interval of W and is therefore a lattice

under left order.

To prove Theorem 4.1, we shall show that W/V, under left order, has a property

similar to but weaker than that of being directed. A subset U of W is said to be

cross directed if for every ordered pair x,y E U there is some w E U such that

x <b w and y <i w.
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THEOREM 4.2. All generalized quotients W/V are cross directed. More pre-

cisely, if x,y E W/V then there is some z EW such that

(1) z<Bx,

(2) zy E W/V,
(3) x <B zy,

(4) y <l zy.

PROOF. Let sys2 ■ ■ ■ sq be a reduced expression for x. We will prove the following

assertion by induction on i:

ASSERTION. For any y E W/V, if si+1Si+2 ■■•sq <B y, where 0 < i < q, then

there is some z E W such that

(1) Z <B SyS2---St,

(2) zy E W/V,
(3) x <B zy,

(4) y <l zy.

PROOF OF ASSERTION. If i = 0 then z = e works. Suppose i > 0 and

Si+iS,+2 •■■Sq <b y- If SiSi+y ■ • • sq <b y also, then by induction there is a z'

satisfying (1) (with i replaced by i - 1), (2), (3), and (4). By choosing z = z', we

have established the assertion.

Now suppose SiSi+y ■ ■ ■ sq ^b V- Let v be any element of V. It follows from

Lemma 2.2 that stsl+y ■ ■ ■ sqv £b yv and si+ySi+2 ■ ■ ■ sqv <b yv. If Siyv <l yv

then by the lifting property SiSi+y ■ ■ ■ sqv <b yv. Since this is a contradiction,

s%yv >l yv. Since (y)(v) is reduced, Si(y)(v) is also reduced. It follows that

SiV E W/V since v was an arbitrary element of V. We also have that Siy >l y.

Hence the lifting property now implies that SiSi+y ■ ■ ■ sq <b Siy.

We are now able to apply the induction hypothesis to s^u, since Siy E W/V and

SjSj+i • ■ ■ Sq <b sty. Let z' be such that

(1') Z' <B SiS2---Sj_l,

(2') z'slV E W/V,

(3') x <B z'sty,

(4') Siy <l z'sly.

We conclude that z — z'si satisfies (1), (2), (3), and (4). Indeed, the lifting property

implies that z'si <b Sys2 ■ ■ ■ Si.     O

PROOF OF THEOREM 4.1. Clearly all generalized quotients are left order ideals

of W (i.e., x <l y E W/V implies x E W/V). Hence they inherit the complete

meet-semilattice property from W. To complete the proof we need only show that

any left-maxima/ element of W/V is the left maximum element of W/V. It will

follow from this that an infinite W/V has no left maximal elements and a finite

W/V is a lower left interval.

Let w be a left maximal element of W/V and let u be any element of W/V.

Since W/V is crdss directed there are 2y,z2 E W/V such that Zy >l u>, zy >b u,

z7 >l v., and z2 >b w. Since w is left maximal in W/V, we have that zy = w.

Therefore w >g u for all u E W/V. This means that w is the Bruhat maximum

element of W/V. It follows that w = z2. Hence w >/, u for all u E W/V. We now

have that w is left maximum in W/V.   □

REMARK 4.3. Let £?(W/V) be the set of reduced expressions for elements of

W/V, viewed now as words in the alphabet S. If Xyx2 ■ ■  X[, yyy2 ■ ■ ■ yk E J?(W/V),
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and / > fc, it follows by Theorem 4.2 that there exists a subword zyz2 ■ ■ ■ Zd =

Xi,xi2 ■ ■ ■ xid, 1 < iy < ■ ■ ■ < id < I, such that zyz2 ■ ■ ■ zdyyy2 ■•■yk E ^f(W/V)

and d> I — fc. This exchange property together with being suffix-hereditary makes

Jt?(W/V) into a special kind of formal language, called a strong greedoid. See [6]

for a discussion of properties and other examples of such exchange languages.

The converse of Theorem 4.1 holds in finite W.

THEOREM 4.4. All lower left intervals in finite W are generalized quotients of

W. More precisely, if W is finite and u, v E W where uv = wo then

[e,u]L=W/[e,v]R = W/{v}.

PROOF. It is easy to see that W/[e,v]R = W/{v}.

We know that if xy = wq then l(x) + l(y) = 1(wq), since wq is the left maximal

element of W. Suppose now that xyz = wo- It follows at once that

l(xy)=l(x) + l(y)ol(yz) = l(y) + l(z).

This translates (for u = xy and v = z) to the fact that if uv = Wq then [e, u]l =

W/{v}.    D
A subset U EW will be called a prime quotient if U = W/{v} for some v E W.

By Theorems 4.1 and 4.4 we have the following:

COROLLARY 4.5. For finite W, the classes of generalized quotients, prime quo-

tients, and lower left intervals coincide.    U

The following is a consequence of Theorem 4.4 and Proposition 2.3.

COROLLARY 4.6. In finite W, all left intervals are isomorphic to generalized

quotients under both Bruhat order and left order.    □

We will now consider extensions of Corollary 4.5 to infinite W. We start with

the relationship between generalized quotients and prime quotients. For any subset

V Q W let V V denote the right join of elements of V when it exists. Note that

since W is a meet-semilattice, V V exists if and only if V has an upper bound in

right order. This is always the case when W is finite. We shall call V right spherical

if V has an upper bound in right order.

THEOREM 4.7. IfVQWis right spherical then W/V is a prime quotient

which is equal to W/{vo} where vo = \/V.

PROOF. It is easy to see that W/{vo} C W/V. For the reverse inclusion we

use induction on l(w) to show that if w E W/V then w E W/{v0}. For l(w) = 0

this holds trivially. Assume that l(w) > 0. Then w = sw' where l(w') = l(w) — 1

and s E S. Since w' <l w, w' E W/V. Hence by induction w' E W/{vq}.

Now suppose that w £ W/{v0}. Then (w)(v0) is not reduced. This implies, by

Lemma 2.4, that sw'v0 = w'vq where v0 <b vq and l(v0) = l(v0) - 1- Let v EV.

Since v <R vo, we have that v0 = vy where (v)(y) is reduced. It follows that

w'vo = sw'vo = sw'vy = w'vy, where y <b y, with the last equality following

from Lemma 2.4 and the fact that s(w')(v) is reduced. Hence vo = vy and (v)(y)

is reduced. Since v was arbitrary, we have that v <R vo ior all v E V. But this

contradicts the fact that vo is the least upper bound of V in right order. Hence

w E W/{v0}, and we are done.    □

Theorem 4.7 gives a sufficient condition for a generalized quotient to be prime.

We now show that for ordinary quotients this condition is also a necessary condition.
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THEOREM 4.8. Let J E S. Then WJ is a prime quotient if and only ifWj is

finite.

PROOF. If Wj is finite then J is clearly right spherical and by Theorem 4.7, WJ

is prime. Conversely, if WJ is prime then WJ = W/{v} for some v E W. Since

s £ WJ for all s E J, sv <l v. Recall that for all ordinary quotients, WJ = W/Wj

and W = WJ ■ Wj. This is equivalent to the fact that WJ is the set of minimal

coset representatives modulo Wj. Left-right symmetry then implies that v can be

uniquely factored into v = vyv2 where

vy E Wj    and    v2 E Jyy = {u> E W | sw > w for all s E J}

and (t>i)(i>2) is reduced. Since sv <l v for all s E J, it follows that svy <l vy for

all s E J. Therefore by Proposition 2.1, Wj is finite.    □

It turns out that when W is infinite and V £ S, W/V can be prime for non-

spherical V. This is verified by (ii) and (iii) of the following theorem.

THEOREM 4.9.   Let (W, {a,b,c}) be the Coxeter group in which the orders of

ab, ac, and be are i,j, and fc, respectively, where i,j, fc > 3. Then the following hold:

(i) The set {ab, c} is not right spherical.

(ii) W/{abc,b} = Wla& = W/{a V 6}.

(iii) Ifi>4 then {abc,b} is not right spherical.

PROOF, (i) Suppose that {ab, c} is right spherical. We may assume without any

loss of generality that abVc has minimum length among all xy\/ z that exist, where

{x, y, z} = {a, b, c}. Since a, c <r ab\/ c it follows that aV c <r ab V c. Note that

since j > 3, aca is reduced and aca <r aVc. Therefore, aca <r abVc. This means

that ab V c = acaw where aca(w) is reduced, which implies that ab <r acaw.

Consequently b <r caw. This implies that caV b <R caw. But since l(caw) <

l(ab V c), the assumption that abW c has minimal length is contradicted. Hence

{ab, c} is not right spherical.

(ii) We clearly have W/{abc,b} C W<-a<b>. Conversely, let w E W^a'bt. Then

(w)ab is reduced. If (w)abc is not reduced, then wab = w'c where (w')c is reduced.

This implies that {ab, c} is left spherical, which contradicts (i). Hence (w)abc is

reduced. Since (w)b is also reduced, w E W/{abc, b}.

(iii) Suppose {abc, 6} is right spherical. Then b <r abew for some w E W where

abc(w) is reduced. Since a, b <r abew, it follows that a V 6 <r abew. Since i > 4,

abab is reduced and abab <r abew. Hence, ab <r cw. This implies that {ab, c} is

right spherical, which contradicts (i).    □

Theorem 4.8 shows that the concept of generalized quotient is a more general

concept than that of prime quotient. We now show that the concept of finite

generalized quotient is less general than that of lower left interval. First we develop

a simple test to determine whether or not a set is a generalized quotient.

For the discussion in this paragraph we shall let L(V) and R(V) denote the left

and right generalized quotients determined by a subset V EW. By this we mean:

L(V) = W/V

and

R(V) = V\W = {w E W | l(vw) = l(v) + l(w) for all v EV} = (W/V'1)'1.
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Directly from the definitions we have

(a) UUCV, then L(U) 2 L(V) and R(U) 2 R(V).
(P) V C R(L(V)) and V C L(R(V)), for all V EW.
This means that the pair of mappings L,R:2W —► 2W give a Galois connection

on the Boolean lattice of all subsets of W. By well-known reasoning, see [3, p. 124],

this implies that the mappings V —► i?L(V) and V —» Li?(I/) are closure operations

on 2VV, i.e., in addition to property (/?), they are order preserving and idempotent.

Furthermore, the mappings L and R are both order-reversing bijections between

the 7?L-closed sets and the Li?-closed sets. Now, clearly U is Li?-closed (i.e.,

U = LR(U)) if and only ii U = L(V) for some KH', since L(V) = LRL(V).
Returning to the notation W/V and V\W for left and right generalized quotients

we have proven the following.

THEOREM 4.10. (i) A set U is a left generalized quotient if and only if U =

W/(U\W).
(ii) There is a one-to-one correspondence between left generalized quotients U and

right generalized quotients V given by U = W/V, or equivalently, V = U\W.    O

Note that for finite Coxeter groups the correspondence between left and right

generalized quotients (i.e., left and right lower intervals) is apparent already from

Theorem 4.4.

We now apply the test, provided by Theorem 4.10(i), for determining whether

or not a set is a generalized quotient, to the following example. Let (W, {a, b, c}) be

the Coxeter group in which the orders of ab, ac, and be are i,j, and fc, respectively,

where i,j, k > 3. We shall show that Wia<bj is not a generalized quotient of W.

We know that W{a,b}\W =<a,6} W. By Theorem 4.9(h), cba E W/^a'b>W. Hence

W{a,b} # W/(a'b>W = W/(W{aM\W). By Theorem 4.10(i), W{atb} is then not a

generalized quotient of W. However W^a.b} is a lower left interval of W. Hence not

all lower left intervals are generalized quotients.

5.    Alternative generalized quotients and convexity.  Let (W, S) be a

Coxeter group and let T be the set of conjugates of S. For any subset A of T,

define the set WA as in definition (1.3), i.e., WA — {w E W \ wt >b w for all

t E A}. We shall show that this alternative notion of generalized quotient is in fact

more general than the generalized quotients that we have so far been considering

in this paper. When W is the symmetric group, the sets WA have an interesting

interpretation as linear extensions of posets, see [10].

Recall that for all w E W, Tw = {t E T \ tw <B w}.

THEOREM 5.1.   LetVEW.  Then W/V = WA where A = (jvev Tv.

PROOF. Let w E W/V. If w $. WA then there is some v E V and t E Tv such

that wt <B w. It follows that l(wv) = l(wttv) < l(wt) + l(tv) < l(w) + l(v). This

contradicts the fact that w E W/V. Hence, w E WA, and therefore, W/V C WA.

Now let w E WA. Suppose that w £ W/V. Then there is some v E V such that

(w)(v) is not reduced. Let v = vysv2, where (vy)s(v2) and (w)(vy) are reduced, but

(w)(vy)s is not reduced. Then by Lemma 2.4, wvys = wvy, where w <b vj. We

also have that wvys = wtvy, where t = vysvy1. Hence, wtvy = wvy, which means

that wt = w. Since w E WA, it follows that t $. A. This implies that t £TV. By
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Proposition 2.5 we have t £ TVlS, which is a contradiction since tvys = vy. Hence,

wEWA, and therefore, W/V = WA.    D

Although there are lower left intervals of W which are not of the form W/V (cf.

§4), it happens that all lower left intervals are of the more general form WA.

THEOREM 5.2.   For any w E W, [e,w]L = WA, where A = T-Tw-i.

PROOF. This is a reformulation of Proposition 2.5.    □

We have chosen, in this paper, to define generalized quotients to be sets of the

form W/V rather than the more general form WA, because we have been able to

show that W/V has a number of desirable properties, such as the chain property

and having lexicographically shellable intervals under Bruhat order. It is an open

question as to whether or not these properties also hold for WA.

One general property that can be established for sets of the form WA is that of

convexity under left order. A subset U of a poset P is said to be convex in P if for

all u,w EU, every minimum length path from u to w in the Hasse diagram of P is

in V'■ For left order this is equivalent to Tits' [22] notion of convexity in Coxeter

complexes.

It is a consequence of Theorem 2.19 in [22] that the sets WA are precisely the

convex order ideals in W (under left order), and their translates WA ■ w, w E W,

are precisely the convex subsets in W. Tits' theorem can be formulated as follows.

For any subsets A and D of T, define Wp to be the set

W£ = {w EW' [t E D => wt <B w and t E A => wt >B w}.

THEOREM 5.3 (TITS). A subset CofW is convex (for left order) if and only

if C = WA for some subsets A,D C T. In particular, C is a convex order ideal if

and only if C = WA for some A ET.

In an appendix (§10) we will discuss convexity from an order-theoretic point of

view. A direct proof (not via Coxeter complexes) of Theorem 5.3 is given there. Of

interest now is the following consequence.

COROLLARY 5.4. Every generalized quotient W/V is a convex order ideal under

left order.      O

6. Descent classes. For K C S the descent class Dk is defined to be the set

{w E W | ws <r w if and only if s E K}. More generally, for I E J E S define the

descent class Dj to be U/c/fcj Dk- Note that WJ = D&, where J denotes S - J.

Hence the ordinary quotients form a subset of the descent classes. In the symmetric

group 5?n, the descent class Dk is the set of permutations whose descents (in the

usual sense) occur in the positions which correspond to elements of K.

THEOREM 6.1. For any I C J C S such that Wj is finite, the descent class

Dj is isomorphic to a generalized quotient under Bruhat order and left order.

PROOF. Let V = {w0(I)} ■ J- We claim that W/V is isomorphic to Dj under

both Bruhat order and left order. The isomorphism tp: W/V —► Dj is given by

ip(w) — WWo(I).

First we show that <p(w) E Dj. Since (w)(v) is reduced for all v E V and

vJo(I) <r v, (w)(wo(I)) is reduced. Hence for all s E I, wwo(I)s <r wwq(I). We
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now have

(6.1) <p(w)s <r <p(w),    for all s El.

For all s E J, (w)(wo(I))s is reduced, since (wq(I))s is reduced and wq(I)s E V.

Hence

(6.2) <p(w)s >r <p(w),    for all s E J.

It follows from (6.1) and (6.2) that ip(w) E Dj.

The map <p is clearly injective. We now show that <p is also surjective. Let

w E Dj. We can decompose w into w = uv where u E W1 and v eWj. To show

that <p is surjective it suffices to show that v = wo(I). Since ws <r w for all s E I,

(u)(v)s is not reduced. It follows that vs <R v for all s E I. By Proposition 2.1,

Wi is finite and v = wq(I).

The fact that tp and its inverse are order preserving under Bruhat order follows

from Lemma 2.2. Under left order it is trivial that tp and its inverse are order

preserving.    D

THEOREM 6.2.   Let I EJ ES.

(1) If Dj is nonempty then Wj is finite and

Dj = {w E W11 w >L w0(I)}.

(2) If Dj is finite and nonempty then Wj and WJ are finite and

Dj = [wo(I),wJ]L,

where Wq is the maximum element ofWJ.

PROOF. (1) It follows from the part of the proof of Theorem 6.1 in which it is

shown that tp is surjective that if Dj is nonempty then Wi is finite and all w E Dj

satisfy w >l wq(I). Clearly we also have that Dj C WJ. Hence,

Dj C {wEW1 \w>L wo(I)}.

Conversely, let w E WJ and w >j, wq(I). Then w = uwo(I), where (u)(wq(I)) is

reduced. If s E I then ws = uwo(I)s <r uwo(I) = w. If s E J then ws >r w,

since w E WJ. Hence, w E Dj.

(2) It follows from (1) that if Dj is finite then Dj has an element which is a left

maximal element of WJ. By Theorem 4.1, WJ is finite and WJ = [e, Wq]l- The

result now follows from (1).    □

Descent classes can be decomposed into smaller subsets which are also isomorphic

to generalized quotients. For I E J E S and bE Di (1 Wj let

Eu(b) = {w E Dj \w = ab for some a E WJ}.

THEOREM 6.3. For I E J E S, Dj = £6e£,;fWj Eu(h)- (The symbol £

denotes disjoint union.)

PROOF. Clearly we have Dj D \Jb€D,nw Eu{°)- Conversely, let w E Dj. We

can decompose w into w = ab where a E WJ and b E Wj. Ii bs >r b for some

s E I then abs >r ab since a EWJ and bs E Wj. This contradicts ab = w E Dj.
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Hence bs <r b for all s E I. Another consequence of ab E Dj is that abs >r ab for

all s E I. This implies that bs >r b for all s E I. Hence b E Dj. It follows that

w E Eu(b). Hence, Dj = \JbeDinWj Eu(b).

To show that Eij(by)nEjj(b2) ^ 0 implies by = b2, let w E Eu(by)nEu(b2).
Then w = ayby = a2b2, where ay,a2 E WJ. Since every element of W decomposes

uniquely as a product of elements from WJ and Wj, ay = a2 and by =b2.    U

THEOREM 6.4. For I C J C 5 and b E Di (1 Wj, Eu(b) is isomorphic to a

generalized quotient under Bruhat order and left order.

PROOF. Let V = J n {b} ■ 7. We claim that the map tp: W/V -»■ Eu(b) defined
by tp(a) = ab is an isomorphism under Bruhat order and left order. The verification

parallels the proof of Theorem 6.1 and is left to the reader.    □

We can now conclude that each set J containing I induces a partition of Dj into

isomorphs of generalized quotients. This partition will be called a J-partition of

Di. The ./-partitions of Di have the following relationship.

THEOREM 6.5. If I Q Jy Q J2 Q S then the Jy-partition of Di is coarser than
the J2-partition of Dj.

PROOF. Let Ejj2(b2) be a block of the J2-partition of /_)/. Since b2 E Di,

b2 belongs to a block, say Eu^by), of the Jy -partition of Di. We claim that

Eu2(b2) C Eu1 (by), which proves the theorem. The routine verification is left to

the reader.    D

The extremal J-partitions of Di are obtained when J = I and J = S. Since

Di n Wi = {u;o(/)}, the /-partition of Di consists of a single block Eu(wo) = Di.

Since Eis(b) = {b} for all b E DidWs = Dj, the S-partition of Di is the partition

Eb€Dl{b}.
We now present a relationship between the blocks of a J-partition of £>/. A

Bruhat order preserving function tp: A —► B, where A, B C W is said to be increas-

ing if a <b <p(a) for all a E A. Let P be a ranked poset with a minimum element

6. A subposet Q of P shall be called a semi-ideal of P ii Q contains 6 and is ranked

with rank function the restriction of the rank function of P. Note that any order

ideal of P is a semi-ideal of P.

THEOREM 6.6. Let Ejj(by) and Ejj(b2) be blocks of a J-partition of Di.
Then there is an increasing isomorphism under Bruhat order between Eu(by) and

a Bruhat semi-ideal of Ejj(b2) if and only if by <b b2.

PROOF. (=>) Since by and b2 are the minimum elements of Eu(by) and Eu(b2)

respectively, and the isomorphism is increasing, it is immediate that by <b b2.

(<=) This is a special case of the following lemma.    □

LEMMA 6.7. Let Iy,I2 C J, by E Dh <lWj, andb2 E Dh C\Wj. If by <B b2
then the function tp:Eilj(by) —* Ei2j(b2) defined by tp(aby) = ab2 is an increas-

ing isomorphism under Bruhat order between E^ j(by) and a Bruhat semi-ideal of

Ei2j(b2).

PROOF. We may assume that by <b b2. To show that 062 E Ei2j(b2), it suffices

to show that ab2 E Di2. If s E I2 then ab2s = ab2 where b2 <b b2. Since a EWJ

and b2 E Wj, it follows that ab2s <r ab2.
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If s E J - I2 then b2s >r b2. Again, since a E WJ and b2s E Wj, we have

ab2s >r ab2.

Now suppose that s E J. Assume that ab2s <r ab2. Since aby E /?/,, abys >r

aby. We also have by Lemma 2.2 that aby <B ab2. It now follows from the lifting

property that aby <b ab2s. Since b2 E Di2, Lemma 2.4 gives that ab2s = ab2

where a <b a. Hence aby <b ab2. It follows from the subword property that

aby = ab2 where a <b a and b2 < b2. Let a = aya2 where ay E WJ and a2 E Wj.

Then aya2b2 = aby. By uniqueness of the decomposition, a = ay, which is a

contradiction since ay <r a <B a. Consequently, ab2s >r ab2. We may now

conclude that ab2 E Di2.

Clearly, tp is injective, increasing, and rank preserving. It follows from Lemma

2.2 that tp and its inverse are Bruhat order preserving. This and the fact that tp is

rank preserving implies that tp(Eilj(by)) is a Bruhat semi-ideal of Ei2j(b2).    D

Another consequence of Lemma 6.7 is Theorem 6.9 below. First we need another

lemma, due to Deodhar [13].

LEMMA 6.8. The map u:W —* WJ defined by n(w) = u, where w decomposes

into w = uv with u E WJ and v E Wj, is a Bruhat order preserving map.

PROOF. Let wy,w2 E W and wy <b w2. Suppose that wy decomposes into

uyVy and w2 decomposes into u2v2 where Uy,u2 E WJ and vy,v2 E Wj. Then

ir(wy) = uy and rr(w2) = u2. liwy < w2 then by the subword property uyVy = u2v2,

where u2 <b u2 and v2 <b v2. Let u2 = ab where a E WJ and b E Wj. Then

uyVy = abv2. By the uniqueness of the decomposition uy = a. Hence, uy <b u2.

It follows that tt is Bruhat order preserving.      □

THEOREM 6.9. Let I C J C S, and suppose that Dj is nonempty. Then the

map tp: Dj —> Dj defined by tp(w) = awo(J), where w decomposes into w = ab with

a E WJ and b E Wj, is an increasing Bruhat order preserving map from Di onto

a Bruhat semi-ideal of Dj.

PROOF. Since Dj is nonempty, by Theorem 6.2 Wj is finite and therefore

WjHDi is finite. Since WjtlDi is a descent class oiWj, by Theorem 6.2 WjDDj has

a maximum element bo- By Lemma 6.7, for each b E WjC\Di, the map <pb: Eu(b) —>

Eu(b0) defined by tpb(ab) = abo is an increasing map. Define tp: Di —► Eu(b0) to

be the join of the maps {<pb [ b E Wj n Di}, i.e., <p(w) = <pb(w) for w E Eu(b).

Clearly, tp is increasing since each tpb is increasing. Note also that tp is surjective.

It follows from Lemmas 2.2 and 6.8 that tp is a Bruhat order preserving map.

Now by Lemma 6.7 there is an increasing Bruhat order preserving map 7 from

Eu(bo) onto a Bruhat semi-ideal of Ejj(wq(J)) = Dj. The composition 7 o tp is

an increasing Bruhat order preserving map from Di onto a Bruhat semi-ideal of

Dj. Note that the composition 7 o tp is precisely tp defined above.    D

A subposet Q of a poset P is said to be a retract of P if there is an order

preserving map from P to Q whose restriction to Q is the identity map. Note that

according to Lemma 6.8, WJ is a retract of W under Bruhat order.

THEOREM 6.10. For any J E S such that Dj is nonempty, Dj is a retract of

W under Bruhat order.

PROOF. Let 7r: W —> WJ be the retraction map as in Lemma 6.8. Since WJ =

Dq = JZicj E>i, let tp:WJ —* Dj be the join of the maps given in Theorem 6.9.
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Then tp(ab) = awo(J) where a E WJ and b E Wj. Clearly, <p is the identity on Dj,

and by Lemma 6.8, tp is Bruhat order preserving. Hence, the composition tpoir is a

Bruhat order preserving map of W onto Dj, whose restriction to Dj is the identity

map.    □

7. Tableau quotients in the symmetric group. Recall that for the sym-

metric group S?n of permutations of the set {1,2,..., n}, the standard choice for a

set S of Coxeter generators is the set of adjacent transpositions (i,i + 1), and the

set T of conjugates of S is the set of all transpositions (i,j), 1 < i < j < n. We

shall think of permutations in S^n as words with n distinct letters 1,2,..., n. If

w E S*n and t is the transposition (i,j) then the permutation tw, obtained from w

by transposing letter i and letter j in w, is greater than w in Bruhat order if and

only if i < j and i appears to the left of j in w. Going "up" in left order requires

transposing consecutive letters and going "up" in right order requires transposing

letters in adjacent positions, where the smaller letter is on the left in both cases.

We now consider two natural partial orderings on the set of standard tableaux of

a fixed shape, one of which is isomorphic to Bruhat order and the other to left order

on a generalized quotient in the symmetric group. Let p = (py > p2 > ■ ■ ■ > pk)

and A = (Ai > A2 > ■ • ■ > Afc) be partitions of m and m + n, respectively, where

0 < Pi < Xi for i = 1,2,..., fc. A tableau of skew shape X/p is an array of integers,

each integer 1, 2,..., n appearing exactly once, such that for each i = 1,2,..., fc,

row i consists of pi blanks followed by Xt — pt integers. A standard tableau is a

tableau in which every row (from left to right) and every column (from top to

bottom, where row 1 is the top row) is increasing (cf. [17, §5.1.4]). Let J^/M be

the set of standard tableaux of shape X/p. We define Bruhat order on ^a/m to be

the order relation generated by T < T' if T" = (i,j)T, where 1 < i < j < n, entry

i appears above entry j in T, and the transposition (i,j) acts on T by transposing

entries i and j. Left order is defined similarly except that j = i + 1. The Hasse

diagram for Bruhat and left order on <^/M, where A = (3,2,1) and p = (1,0,0), is

given in Figure 7.1 (the solid lines represent left order and the dotted lines represent

the additional relations of Bruhat order).

The standard tableau of shape X/p whose first row contains 1,2,...,\i — py,

whose second row contains Xy — py + 1, Xy — pty + 2,... ,Xy — py + X2 — p2, etc.,

shall be referred to as the row tableau of shape X/p. The column tableau of shape

X/p is defined similarly.

THEOREM 7.1.   Let X/p be any skew shape.

(1) Both Bruhat order and left order on ^\/n are graded posets, whose minimum

element is the row tableau of shape X/p, and whose maximum element is the column

tableau of shape X/p.

(2) Left order on ^a/m is a lattice.

(3) Bruhat order on 3\/^ is CL-shellable.

PROOF. We will show in Theorem 7.5 that «5£/M is isomorphic, under both

Bruhat order and left order, to a generalized quotient in the symmetric group S?n.

The result will then follow from Corollary 3.9 and Theorem 4.1.    □

Theorem 7.1 actually holds for shapes more general than skew shapes. See

Remark 7.3 about this.



20 ANDERS BJORNER AND M. L. WACHS

35
14
2   \

25 \     34
14   ^ 15
3     y\. 2

25 \   24 ^^"\^       15
13 0 15 ^-24

,4    C^->.-"'    3      \ 3 \

A'^SC ^   \
24   ' S23/     \. 15      ^\\     14

^  \\ 15\ 23 ^>25
\ ^\^ 4       ^~^\ 4   N 3

23 ^\    14      T^C \   13
14 23    ' ^   25

5     \ 5 ^—*"   4

13   -"""^ 12
24 35

5    \ /4

12
34
5

Figure 7.1

We shall now describe four maps from ^a/m onto left intervals of S?n which

are either isomorphisms or anti-isomorphisms under Bruhat order and left order.

The word of a tableau T, denoted by w(T), is the permutation in S^n obtained by

reading the entries of T in some specified order which we call a reading order. We

shall consider four different reading orders. Let T be the tableau

134

26

5

(1) In row order the tableau entries are read row by row from left to right and

from top to bottom; and w(T) is 134265.

(2) In column order the tableau entries are read column by column from top to

bottom and from left to right; and w(T) is 125364.

(3) In French order the tableau entries are read row by row from left to right

and from bottom to top; and w(T) is 526134.

(4) In Hebrew order the tableau entries are read row by row from right to left

and from top to bottom; and w(T) is 431625.
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THEOREM 7.2. Let w(£^/ti) be the set {w(T) | T E ^x/^} where w is some

fixed reading order. If the reading order is row order or column order then w(^x/li)

is a generalized quotient and hence, a lower left interval ofS^n.

PROOF. Since the result for row order is equivalent to the result for column

order (by considering the conjugate shape), we need only prove it for row order.

We label the "squares" of the shape X/p in row order. For i = 1,2,... ,n, let rl be

the label of the right-most square in the row of the square labeled i and let bi be

the label of the square directly below square *, unless square i has nothing below

it, in which case bi = 0. For each i such that bi ^ 0, let Vi be the permutation

(i,i + l)(i + l,i + 2) ■ ■ ■ (rt - l,rt)

■ (bt - 1,bi)(bi -2,bi-l)---(rz + 1,n + 2)(n,rz + 1).

Let T be a tableau of shape X/p,. Note that the permutation w(T)vi is obtained

from the permutation w(T) by first moving the entry of square i to the right until

it reaches the end of its row; and then moving the entry of square bi to the left

until it reaches the beginning of its row; and finally interchanging these two entries,

which are now in positions r, and r, + 1. It follows that (w(T))(vi) is reduced if

and only if all the entries to the right of square i are greater than that of square i,

all the entries to the left of square 6, are less than that of square bi, and the entry

of square i is less than that of square bi.

Let J be the set {(i,i + 1) \ i = 1,2,... ,n — 1, i'. ̂  r^}. Note that J is the

set of all transpositions that corrrespond to pairs of horizontally adjacent squares

in a tableau of shape X/p. Hence, if T is a tableau of shape X/p, then (w(T))s is

reduced for all s 6 J if and only if the rows of T are increasing from left to right.

Now let V = J U {vi | i = 1,2,..., n, bi ^ 0}. It follows from the above analysis

that w(^x/n) — W/V. By Theorem 4.1, w(S\/ll) is a lower left interval.    D

REMARK 7.3 The preceding result is true in greater generality. Let T be any set

of n squares from a sufficiently large chessboard. Say that a filling of the squares of

T with the integers 1,2,..., n, each occurring once, is a standard tableau of shape

T, if each row is increasing (also across gaps) and each consecutive segment of each

column is increasing. For instance, the following is a standard tableau:

15

2   6

347

Let Sr be the set of standard tableaux of shape T and let w(Sr) be the set of

tableau words read in row order. The proof of Theorem 7.2 shows that w(Sr) is

a generalized quotient, and hence a lower left interval of S^n. In Theorem 7.6 a

much more general situation will be described. For simplicity we will, in the sequel,

discuss only the skew shapes X/p previously defined, although the results hold for

general shapes. Recently, R. Dipper and G. James [14, Lemma 1.5] have also shown

that the set of standard tableau words read in row order gives a lower left interval.

REMARK 7.4. The fact that w(S\j^) is a lower left interval has an algorithmic

aspect. Say we want to generate all standard tableaux of shape X/p listed in order

of the number of inversions of their tableau words read in row order. An algorithm

for doing this can be described as follows: Start with the column tableau Ty, which

is the maximum element of Sx/p.  Suppose all the standard tableaux whose row
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words have p inversions have already been generated, where 0 < p < l(w(Ty)).

Then for each such tableau T and each entry i for which i + 1 is in a higher row

than i in T, transpose i and i + 1 to obtain a tableau whose row word has p — 1

inversions. After deleting duplications, this will have generated a complete list of all

T E Sx/p such that w(T) has p — 1 inversions. The sequence of standard tableaux

produced by this algorithm is clearly a linear extension of the dual of Bruhat order

on Sx/fi- An algorithm of Nijenhuis and Wilf [18] also generates a sequence of

standard tableaux which happens to be a linear extension of the dual of Bruhat

order on ^a/^.

The following theorem includes Theorem 7.2 and provides an explicit isomor-

phism or anti-isomorphism between the posets ^a/m and w(Sx/ll) for all the above-

mentioned reading orders.

THEOREM 7.5. Let w:S\/^ —> S^n be the map in which w(T) is the word ofT

obtained from some fixed reading order. If the reading order is row order or Hebrew

order, then w is an isomorphism, under Bruhat order and left order, between ^a/m

and a left interval of Sfn. If the reading order is column order or French order,

then w is an anti-isomorphism, under Bruhat order and left order, between ^a/m

and a left interval of S?n. Moreover, the left interval is a lower left interval when

the reading order is row order or column order.

In order to show that the image of ^a/m under each of the maps is a left interval

we shall rely on a general result presented below. We define a tableau quotient

to be the image of 5a/m under any of the maps in Theorem 7.5. The ordinary

quotients WJ in W = 5^n form a subclass of the tableau quotients. Indeed, the

ordinary quotients are of the form w(S\/tl) where X/p consists of nonoverlapping

rows and the reading order is row order, column order, or French order. The descent

classes Di in S^n are also tableau quotients. Here X/p has zigzag shape and the

reading order is French order or Hebrew order. Note that the poset in Figure

7.1 corresponds to a descent class. More generally, descent classes Dj in S?n are

tableau quotients, corresponding to shapes where the rows overlap in at most one

square, and the reading order is French or Hebrew order. Garsia and Remmel [16]

show that tableau quotients, for French order and Hebrew order, are unions of dual

Knuth equivalence classes.

Tableau quotients form a special case of a more general structure. Let P be a

poset with n elements. A standard labeling L of P is a labeling of P with integers,

each integer 1,2,..., n appearing exactly once, such that the labeling is compatible

with the partial ordering, i.e., if x <p y then L(x) < L(y). If we specify an ordering

of the elements of P, xy, x2,..., xn, and then read the standard labeling L in this

specified order, we obtain a permutation L(xy),L(x2),..., L(xn) in S?n. We shall

call the specified linear order, a reading order. If rr is a reading order of P then we

let ^(P, ir) denote the set of permutations obtained by reading standard labelings

of P in the order given by ir.

The set of standard tableaux of a fixed shape clearly is a set of standard labelings

of a poset. Each of the four orders, row order, column order, French order, and

Hebrew order, are examples of reading orders of the poset. The sets w(Sx/li), in

Theorem 7.5, are hence of the form S?(P,-k). We now present a simple criterion

on 7r for determining whether or not £?(P,ir) is a left interval of <5^.
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THEOREM 7.6. Let P be a poset with n elements and let ir be a reading order

of P. Then J^(P,tt) is a left interval of S^n if and only if it satisfies the following

condition.

(*) For all x <p z and y E P, if x precedes y which precedes z in tt, or if z

precedes y which precedes x in tt, then x <p y or y <p z.

The proof of Theorem 7.6 will appear in [10]. It is also observed in [10] that the

class of posets which admit reading orders satisfying condition (*) is precisely the

class of two-dimensional posets. In fact, it is shown that every left interval of S?n

is of the form J2?(P,ir) where P is two-dimensional and rr satisfies condition (*).

PROOF OF THEOREM 7.5. It is easy to check that row order, column order,

French order, and Hebrew order are reading orders which satisfy (*) of Theorem

7.6. Hence, w(^/M) is a left interval for these orders. Clearly, w(S\/ll) contains the

identity when the reading order is row or column order. Hence, the left intervals

are lower left intervals in these cases.

It is easy to see that the map w is Bruhat and left order preserving when the

reading order is row order or Hebrew order, and w is Bruhat and left order reversing

when the reading order is column order or French order. It is also immediate that

the inverse of w on w(Sx/p) is left order preserving or reversing. For Bruhat order

this is not immediate. Let us restrict ourselves to the case that the reading order is

row order or Hebrew order. The case of column order and French order is handled

similarly. Suppose that T,T' E ^/M and w(T) <B w(T'). lil(w(T'))-l(w(T)) = 1

there is no problem, since then w(T') is obtained from w(T) by a transposition of

entries of T. However, if l(w(T')) — l(w(T)) > 1 we must be sure that we can find

an unrefinable chain in Bruhat order from w(T) to w(T') which consists entirely of

images of standard tableaux. Since w(/7x/ll) is a left interval, by Corollary 4.6 it is

isomorphic, under Bruhat order, to a generalized quotient. Hence by Theorem 3.5,

it contains an unrefinable chain in Bruhat order from w(T) to w(T'). This implies

that there is a chain of standard tableaux in Bruhat order from T to T', which

means that T <BT'.    D

8. Forest quotients in the symmetric group. We now consider another

class of generalized quotients in S?n, which arises combinatorially and shares some

interesting properties with ordinary quotients. Let tp be a planar forest with n

nodes, i.e., an ordered collection of planar trees, where a planar tree consists of a

root and an ordered collection of planar subtrees. We can picture the forest drawn

in the standard way with roots on top and the ordered collections of subtrees drawn

from left to right. This allows us to say that node i is to the left of node j if there is

a subtree containing node i which precedes a subtree containing node j. A standard

labeling of ip is defined to be a labeling of tp with integers, each integer 1,2,..., n

appearing exactly once, such that the label of a node is less than the label of its

parent. Let ,^, be the set of all standard labelings of forest tp. Bruhat order on

J?jp is defined to be the order relation generated by F < F' if F' = (i,j)F, where

the transposition (i, j) acts on labels i and j in F and i appears to the left of j in

F and i < j. Left order is defined similarly except that j = i + 1.

There are two well-known linear orderings of a planar forest, and three in the

case of binary trees.
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DEFINITION. Let tp be a planar forest with trees <py, tp2,..., <pk ordered from left

to right. Postorder is a linear ordering of the nodes of tp which is defined recursively

as follows:

(1) For fc > 1, first order the nodes of <py in postorder and follow this with the

nodes of tp2 in postorder. Continue ordering the nodes this way, finally putting the

postordered nodes of tpk last.

(2) For fc = 1, first postorder the subforest obtained by removing the root of

tp = tpy and then let the root come last in the ordering.

Preorder is defined similarly, except that in preorder the root comes before the

preordered subforest.

A binary tree is a planar tree which is either empty or consists of a root and

left and right subtrees (which can be empty). For binary trees, inorder is a linear

ordering of the nodes defined by a similar recursive scheme except that the root

comes between the inordered left and right subtrees.

To illustrate these definitions, consider the tree

A
/  A

d e/ f

g

Here, postorder= dbgefca, preorder = abdcegf, and inorder= dbaegcf.

We will say that a linear ordering of the nodes of a planar forest tp is recursive

if the nodes of each subtree of tp occur as a consecutive segment of the ordering.

The reason for this name is that such orderings are precisely the ones that can be

obtained by the following recursive procedure:  Let tpy, tp2,... ,<pk be the trees of

<P-

(1) For fc > 1, first order the nodes of each <pi recursively. Then concatenate

these orderings in any order.

(2) For fc = 1, first recursively order the subforest obtained by removing the root

of tp = py, and then insert the root after any of the trees, or before the first tree,

in the recursively ordered subforest.

In particular, postorder, preorder, and inorder are all recursive orderings.

THEOREM 8.1.   Let tp be any planar forest.

(1) Both Bruhat order and left order on ,9^ are graded posets, whose minimum

element is the postorder labeling, and whose maximum element is the right to left

postorder labeling.

(2) Left order on .9^ is a lattice.

(3) Bruhat order on 9\p is CL-shellable.
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PROOF. Just as in the proof of Theorem 7.1, we shall provide an isomorphism

under Bruhat order and left order from 3\p to a generalized quotient in J?^. The

isomorphism is given in the next theorem.    □

THEOREM 8.2. Let tp be a planar forest with n nodes, and let w:9~v —> S?n be

the map in which w(F) is the permutation obtained by reading the labels of labeled

forest F in a fixed order which is either postorder, preorder, or any other recursive

ordering. Then w is an isomorphism, under Bruhat order and left order, between

9~v and a left interval of S?n. Moreover the left interval is a lower left interval when

the reading order is postorder.

PROOF. We can think of tp as the Hasse diagram of a poset and of 9\p as the

collection of standard labelings of the poset. One can easily check that any recursive

ordering yields a reading order which satisfies condition (*) of Theorem 7.6. Hence,

w(9\p) for these reading orders are left intervals. The rest of the proof is exactly

like that of Theorem 7.5.    □

The map in Theorem 8.2 for which the reading order is postorder shall be called

the postorder map, and the preorder map and inorder map are defined similarly.

COROLLARY 8.3. Let BT(n) be the set of binary trees with n nodes and let w

be the inorder map on binary trees. Then the sets w(9p), tp E BT(n), partition

SPn into ( ™)/(n+ 1) disjoint left intervals.

PROOF. For every permutation a E S^n, there is a unique standard-labeled

binary tree T such that w(T) = a. The label of the root of T is n, and its left and

right subtrees Ty and T2 are the unique standard-labeled binary trees satisfying

w(Ty) = ay and w(T2) = a2, where a = oyno~2. The result now follows from

Theorem 8.2 and the well-known fact that (2™)/(n + 1) is the number of binary

trees with n nodes.    □

We define a forest quotient to be the postorder map image of 9^, where tp is any

planar forest. Note that the ordinary quotients are precisely those forest quotients

in which the forest consists entirely of linear trees. An important property of

ordinary quotients WJ, that does not as a rule extend to generalized quotients

(e.g., not to all tableau quotients in S?n), is that every w E W decomposes uniquely

into u ■ v where uEW3 and v E Wj. We say that a generalized quotient U splits

W, if there exists a set V C W such that U = W/V, and the map 7: U x V —» W

defined by "/(u, v) = uv is bijective. Hence, ordinary quotients split W. It turns

out that forest quotients in W = S?n also split W.

Let xy,x2,... ,xn be the nodes of the forest tp in postorder. For each i =

1,2,..., n, let hi(tp) be the number of nodes of the subtree rooted at xt. Note that

these nodes are consecutive in postorder. That is, the nodes of the subtree rooted

at Xi are Xj, Xj+y,... ,xt where j = i — hi(<p) + 1. Let Vi(tp) be the permutation

st_1Sj_2 • • • Sj, where su is the adjacent transposition (u, v+1) (sv acts on the right

of a permutation by transposing adjacent symbols). Note that the right interval

[e,Vi(tp)]R consists only of a single maximal chain

e <r S,_i  <r Si_iS,_2 <R ■■ <R Si-ySi-2 ■ ■ ■ Sj = Vt(tp).

THEOREM 8.4.   Let w:9\p —> S^n be the postorder map.

(1) The map

T-w(^p) x [e,vy(tp)]R x [e,v2(tp)]R x ■•• x [e,vn(<p)]R -► S*n,

defined by q(u, wy, w2,..., wn) = uwyu2 ■ ■ ■ wn, is bijective.
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(2) If uE w(9\p) and Wi E [e,Vi(<p)]R for i = 1,2, ...,n, then

l(uWyW2 ■ ■ ■ Wn) = l(u) + l(wy) + l(w2) -\-h l(wn).

(3) The generalized quotient S^n/([e,vy(p)]R ■ [e, v2(<p)]r ■ ■ ■ [e, vn(<p)]R) is the

same as the forest quotient w(9\p).

(4) [e,vy(tp)]R ■ [e,v2(tp)]R---[e,Vn(<p)]R = [e,vy(<p)v2(tp) ■ ■ ■ vn(tp)]R.

(5) The permutation vy(<p)v2(<p) ■ ■ -vn(tp) is the same as the permutation ob-

tained by labeling tp in postorder and reading the labels in preorder.

PROOF. If tp is the forest with all single node trees, then (l)-(5) hold trivially.

Suppose then that some node of tp is a parent. Let m = min{y = 1,2,...,n |

Xj is a parent}. Let tp' be the forest obtained from tp by having all the children of

xm in <p be siblings of xm in tp'. For example, if

then

Note that xm has no grandchildren in tp since it was chosen to be minimal. We

have that hi(tp) = hi(tp') iii ^ m and hm(tp) > hm(<p') = 1. Hence, Vi(tp) = Vi(<p')

if i ^ rn and vm(tp') = e. It is also true that Vi(<p) = Vi(tp') = e for i < m. It

follows that (1) and (2) are consequences of the following lemma by induction on

E"=i Mp)-
LEMMA 8.5. (a) The map ip:w(9p)x[e,vm(<p)]R —► w(9~v<), defined by ip(u,v)

= uv, is a bijection.

(b) For allu E w(9f>) and v E [e,vm(tp)]R, l(uv) = l(u) +l(v).

PROOF, (a) We shall let the permutations in Sfn act on labeled forests as follows:

If F is a labeling of tp and v E S?n, then Fv is the labeling of <p defined by

Fv(xi) = F(xv(l)),        i = l,2,...,n.

Note that w(Fv) = w(F)v.   Hence, (a) is equivalent to showing that the map

ijj:9\p x [e, vm(ip)]R —> 9p> defined by tjj(F, v) = Fv is a bijection.

Note that F E 9^ if and only if F E 9~^ and F(xm) > F(xt) for all i =

j,j + l,...,m-l where j = m - hm(tp) + 1. First we show that if F E 9~v and

v E [e,vm(tp)]R then Fv E9\p>. Let v = sm-ysm-i ■ • • sk where fc > m — h(m) + 1.

To get Ft; from F, the labels of xm and of some of its descendants are cyclically

permuted. Note that by the choice of m, the descendants are actually children of

xm in tp. Consequently, they are siblings of xm in tp'. Hence Fv is obtained from
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F by permuting the labels of childless siblings in tp1. Since F is a standard labeling

of tp', it follows that Fv is a standard labeling of tp'.

Now let F' be a standard labeling of tp'. Let fc be such that m — hm(tp) + 1 <

fc < m and F'(xk) > F'(xi) for all i such that m - hm(tp) + 1 < i < m. In

other words, xk has the largest label in the subtree of tp rooted at xm. Clearly,

v = sm_ism_2 • • • sk is the unique element of [e,vm(<p)]R such that

(8.1) F'v-1(xm)>F'v-1(xl),

for all i = m - 1, m - 2,..., m - hm(<p) + 1. We have that F'v~l is a standard

labeling of tp', since it is obtained from F' by permuting the labels of childless

siblings in tp'. Therefore by (8.1) we have that F'v~l is also a standard labeling of

<p. Since v was uniquely determined, it follows that i/> is a bijection.

(b) Let u = w(F), where F E 9~<p, and let v = sm-ysm-2 ■ ■ ■ sk, where m —

hm(<p) + 1 <k <m. Then uv = w(Fsm-ySm-2 ■ ■ ■ sk). Note that sm-ysm-2 ■ ■ • sk

acts on F by repeatedly transposing label F(xm) with labels of children of xm. Since

these labels are all smaller than F(xm), each transposition increases the length of

the corresponding permutation. Hence l(uv) = l(u) + m — k = l(u) + l(v).    D

CONTINUATION OF PROOF OF THEOREM 8.4. Parts (1) and (2) have now been

proven and we continue with (3) and (4). We will leave it to the reader to check

part (5).

(3) It follows from (2) that

w(9p) C 5<n/([e, vy(<p)]R ■ [e, v2(tp)]R ■ ■ ■ [e, vn(<p)]R).

We now claim that

(8.2) w(&p) = <?n/{vy(<p), V2(tp),. . .,Vn(tp)}.

Indeed, l(wvi(tp)) = l(w)+l(vi(<p)) means that w(i) > w(i- 1), w(i-2),...,w(j),

where j = i — hi(tp) + 1. Since this is precisely the condition that characterizes

permutations in w(9v), (8.2) holds. It follows that

w($p) Q ^n/([e,vy(^)]R ■ [e,v2(tp)]R ■ ■ ■ [e,vn(tp)]R)

Q ^/{vy (<p), V2(tp), ...,vn(tp)}

= w(9-r).

We may now conclude that (3) holds.

(4) Let u be the maximum element of w(9\p). By (1) and (2), the maximum

element of 9?n equals uvy(tp)v2(tp) ■ ■ -vn(tp). [e,vy(tp)v2(tp) ■ ■ -u„(<p)]r is the right

generalized quotient w(9~^)\97n by Theorem 4.4. But by (2), we have that

[e, vy (tp)]R ■ [e, v2(tp)]R • • • [e, v„(tp)]R C w(9p)\Sin.

It follows that

[e,vy(tp)]R ■ [e,v2(tp)]R.--[e,vn(<p)]R E [e,vy(tp)v2(<p) ■ ■ -v^tp)]^

For the reverse inclusion it suffices to show that V = [e,vy(<p)]R ■ [e,v2(<p)]R

■ ■ ■ [e, vn(<p)]R is a right order ideal in 9n- We shall show that if Wi E [e,Vi(<p)]R

for all i = 1,2, ...,n and Wyw2- ■ -wns <R wyw2- ■ -wn, where s E S, then

wyw2- ■ -wns E V. The following lemma and the strong exchange property im-

ply this.
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LEMMA 8.6. Let fc <n and Wi E [e,Vi(<p)]R, i = 1,2,...,k. If wyw2 ■ ■ ■ wks =

wy ■ ■ wm ■ ■ ■ wk where 1 < m < k and wm <b wm, then ujm <R wm.

PROOF. We prove this by induction on fc. If fc = 1 or fc = m the lemma is

trivial. Suppose m < fc. It follows from (2), the strong exchange property, and the

fact that each Wi has a unique reduced expression, that m is uniquely determined

by s and that wyw2 ■ ■ -wks <R Wyw2 ■ ■ -wk. Since m < fc, we can conclude that

wks >R wk. Since wk <R vk(tp), wk = sk-ysk_2 ■ ■ ■ s3 where j > fc - hk(tp) + 1. It

follows that s / Sj.

We now show that s ^ Sj-y. Note that each Wi permutes only the numbers,

1,2,...,i. Consequently, the permutation Wyw2 ■ ■ ■ wk-y permutes only the sym-

bols 1,2,..., fc - 1 and fixes the symbols fc, fc + 1,..., n. It follows from this that fc
appears in position j in wyw2 ■ ■ ■ wk, and the symbols fc + 1,fc + 2,...,n are fixed

in positions fc + 1, fc + 2,..., n, respectively. This implies that Wyw2 ■ ■ ■ wks3-y >R

Wyw2 ■ ■ ■ wk. Since Wyw2 ■ ■ ■ wks <R Wyw2 ■ ■ ■ wk, we may conclude that s ^ Sj-y.

There are now two cases to consider.

Case 1. Suppose s = Si, where i < j — 1. Since Si commutes with each of

Sfc_i,8fc_2,. • • ,Sj, we have

U>1 • ■ -Wm ■ • • Wk = WyW2 ■ ■ ■ WkS = WyW2 ■ ■ ■ Wk-ySWk.

This implies that Wyw2 ■ ■ ■ wk~ys = wy ■ ■ ■ wm ■ ■ ■ wk-y. It follows by induction that

Wm <R Wm.

Case 2. Suppose s = s,, where i > j. This time we have that sk^ySk-2 ■ ■ ■ SjSi =

Si-ysk-ysk-2 ■ ■ ■ Sj, since clearly i < fc. This allows us to conclude that

WyW2-Wk-ySi-y = Wy ■ ■ ■ Wm ■ ■ ■ Wfc-1-

Again by induction we have that wm <R wm.    D

We now consider the dual situation. Let 9~* be the set of dual standard labelings

of a planar forest tp with n nodes, where a dual standard labeling of p is a labeling

with distinct integers 1,2,..., n, in which the label of a node is greater than that

of its parent. Theorems 8.1 and 8.2 hold for 9\£ with preorder replacing postorder.

Theorem 8.4, appropriately modified, also remains true for 9~*. We summarize

this in the following theorem.

THEOREM 8.7. Let tp be a planar forest with n nodes, let w:9\p —+ S?n be the

postorder map, and let w*:9~^ —► S?n be the preorder map.  Then the following hold:

(1) w(9p) is the generalized quotient <9n/[e,v]R, where v is the permutation

obtained by labeling tp in postorder and reading the labels in preorder.

(2) w(9p) is the interval [e,u]^, where u is the permutation obtained by labeling

tp in right to left postorder and reading the labels in postorder.

(3) w*(9~*) is the generalized quotient <9yn/[e,v~l]R, where v is as in (1), i.e.,

v_1 is obtained by labeling <p in preorder and reading the labels in postorder.

(4) w*(9~*) is the interval [e,u*]i, where u* is obtained by labeling tp in right

to left preorder and reading the labels in preorder.

(5) [e,v]L, [e,v~l]L, [e,u]L, [e,u~l]L, [e,u*]L, and [e,u*~1]L are all splitting

quotients in 5^n.    □

Note that if tp is a forest of all linear trees, then Theorem 8.7 reduces to the fact

that Wj and WJ are splitting quotients of A. It would be interesting to find a

characterization of those permutations w for which [e,w]i splits S^n.
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9. Combinatorial structure of some quotients in the symmetric group.

The ordinary quotients WJ of the symmetric group W = 5?n have been generalized

in two directions in the preceding sections. On the one hand, WJ is a special case

of a descent class, and descent classes are special cases of tableau quotients. On

the other hand, WJ is a special case of a forest quotient, namely for a forest with

linear trees. In this section we will show that a number of combinatorial properties

known for ordinary quotients WJ in the symmetric group extend to these larger

classes of quotients.

For any subset yl of a Coxeter group W, let A(q) = J2W€A Q1^ • If -^ is a graded

poset under Bruhat order or weak order, then A(q) is the rank generating function

of A, up to a power of q. For each integer fc > 1, let [fc] = 1 + q + q2 + ■ ■ ■ + qk~1

and [jfc]! = [fc] • [fc — 1] - - - [1].

THEOREM 9.1. Let p be a planar forest with n nodes, and let Av = w(9"{p) or

Av = w*(9~*), where w:9p —* 9%, is the postorder map and w*:9~* —* 9^n is the

preorder map.  Then,

(a) Aip(q) = [n]\/f[[hl],
'     i=l

where hi is the size of the subtree rooted at the ith node.

(b) A,p(q) is a reciprocal polynomial, i.e., in Ar(q), the coefficient of q1 is equal

to the coefficient of qd~l, where d = degA^,(q).

PROOF, (a) We shall prove this for Av = w(9p). The proof for Av = w*(9~*)

is similar.

By (1) and (2) of Theorem 8.4 we have

3>n(q) =        ^       A™1™2 '™")

u€ui(^)

m€[e,Vi(p)]R

-Ap(q)-f[( Y. J^
i = l      w,^\e,Vi(<p)}R

It is well known that 9^(q) = [n]\ (cf. [1]). Since [e,Vi(tp)]R is a single unrefinable

chain of cardinality hi, we also have

£ ql^ = l + q+--- + qhi-1 = [hl].

u>i€[e,Vi(tp)]R

Hence,
n

[n]\=A^(q)-Y[[ht].
i=l

(b) By Theorem 8.2, w(9~v) and w*(9r{p) are isomorphic under Bruhat order and

left order. Let a: w*(9p) —> w*(9~*) be the map defined by a(w) = wqw, where w0

is the maximum permutation oiS^n, i.e.,: n,n — 1,..., 1. Recall that multiplication

by wo on the left of a permutation serves to interchange the symbols 1 and n, 2

and n — 1, etc. Hence, u E w*(9p) if and only if a(u) E w*(9~j:). Therefore a is a

bijection. It is also clear that a and its inverse are order reversing. Combining this
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with the fact that w(9v) and w*(9'ip) are isomorphic allows us to conclude that

w*(9~p) is isomorphic to the dual of w(9v). Since by part (a) the rank generating

function of w(9v) is equal to that of w*(9~*), we have that the rank generating

function of w(9~v) is equal to that of its dual.    □

Part (a) of Theorem 9.1 is a g-analogue of Knuth's [17, p. 70] hook-length formula

for the number of standard labelings of a planar forest. Another g-analogue of the

hook-length formula is given by Stanley in [19]. His formula is identical to ours

except that instead of ^-counting in terms of the number of inversions (i.e., length)

of the permutation, he uses the major index of the inverse of the permutation.

By combining our result with Stanley's we obtain the curious fact that ^-counting

forest quotients in terms of inversion numbers is the same as (^-counting in terms

of inverse major index. In [11] we use a bijection of Foata to prove the identity

directly, and in [10] we show that this identity can actually be used to characterize

forest quotients.

When tp is a forest with linear trees, part (a) of Theorem 9.1 reduces to the

formula expressing the rank generating function of an ordinary quotient in S?n as

a q-multinomial coefficient. It is easy to see that this formula is actually equivalent

to MacMahon's well-known formula expressing the distribution of the number of

inversions of multiset permutations as a ^-multinomial coefficient (see [1, p. 41]).

In connection with part (b) of Theorem 9.1 we remark that forest quotients Av

are not necessarily isomorphic to their duals as posets. E.g., this fails for both

Bruhat and left order for the tree

<\   •

However, for forests with left-right symmetry the maximal element in the quotient

is an involution, and hence isomorphism with the dual follows from Theorem 3.10.

In [11] we show that the forest quotients are not only rank symmetric but also

rank unimodal.

A stronger property of ranked posets than that of being rank symmetric is the

symmetric chain decomposition property. This means that P can be partitioned

into disjoint unrefinable chains xt < Xi+1 < < xT-i, where r is the length of P

and the rank of Xj is j for i < j < r — i. It is known that all parabolic subgroups

of S^n (often known as Young subgroups) have the symmetric chain decomposition

property under Bruhat order [21, p. 182]. This result generalizes to other left

intervals of S^n.

THEOREM 9.2. Let tp be any planar forest with n nodes. Ifv is the permutation

obtained by labeling <p in postorder and reading the labels in preorder or vice versa,

then [e,v]i, has the symmetric chain decomposition property under Bruhat order.

PROOF. Let v be the permutation obtained by labeling tp in postorder and

reading the labels in preorder. Then v~l is the permutation obtained by labeling

tp in preorder and reading the labels in postorder. By Theorem 8.4, the map

ip:[e,vy(tp)]R x [e,v2(tp)]R x ••• x [e,vn(tp)]R -* [e,v]R,
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defined by ip(wy,w2,..., wn) = wyw2 ■ • ■ wn, is bijective. The map induces a par-

tial order relation on [e, v]R, which is isomorphic to the direct product of right

order on the intervals [e,vt(p)]R. By (2) of Theorem 8.4, this order is weaker than

Bruhat order on [e, v]R but it has the same rank function. Recall that each inter-

val [e,Vi(<p)]R is simply a chain under right order. The induced order on [c,v]r is

hence isomorphic to a product of chains. It is well known that a product of chains

has the symmetric chain decomposition property (cf. [21, p. 182]). Clearly, any

partial order that is stronger than, and has the same rank function as, a partial

order with the symmetric chain decomposition property, also has the symmetric

chain decomposition property. Hence, [e, u]j? has the symmetric chain decomposi-

tion property under Bruhat order. By left-right symmetry, [e,i>_1]£, also has the

symmetric chain decomposition property under Bruhat order. The same argument,

using the version of Theorem 8.4 for dual standard labelings and the preorder map,

implies that [e,w_1]fi and [e,v]r, have the symmetric chain decomposition property

under Bruhat order.    □

We now turn to tableau quotients. A general formula for g-counting tableau

quotients does unfortunately not seem to exist. However, for the special case of

descent classes Dj there is the following determinantal formula. For the case 1 = 0,

this again specializes to the multinomial formula for WJ(q). For the case I = J,

the formula was previously obtained by Stanley [20], as a ^-analogue to a result of

MacMahon (viz., the I = J and q = 1 case).

THEOREM 9.3. Let S = {sy,s2,..., sn-i} be the set of adjacent transpositions

st = (i, i + 1) in A- Suppose I C J = {sj, , Si2,..., Sjy} C S, 1 < iy < i2 < ■ ■ ■ <

ij < n — 1.  Then

/   i i i l     \

/ ItTJT       I^JT F7[T       •••        RI
* x. i i

[*2 —* i ]!       [«3-»i]!       '■"        [n-«i]!

DI(q) = [n]ldet       Q 0 * ,   1  ,

V o       o o      ...   I^7Tf;

where the subdiagonal element * in the pth column equals one if Si E I, and is zero

otherwise, 1 < p < j.

PROOF. First let (W, S) be any Coxeter group, and I E J E S. We shall prove

the formula

J-ICKCJ yvKWI

where K = S - K (cf. [12, p. 45]).

Since WK = D£, and hence

WK\a> LCK



32 ANDERS BJORNER AND M. L. WACHS

we get for the right-hand side of (9.1)

RHS=      £     (-ljl^J^M
J-ICKCJ LCK

= £ DL(q) £ (-1 A«l

LQJ (J-I)ULCKCJ

=    £   DL(q) = DJ(q).
ICLCJ

Now, iorW=<9n and K = {sei,se2,...,seic} C S, 1 < ex < e2 < ■ ■ ■ < ek <

n - 1, we know that W (q) = [n]!, and therefore also that

W-R(q) = [el]\[e2-ey]\---[n-ek]\.

Hence, (9.1) takes the form

D/WAiA1A.)*h-J-l,.-etlr
It is a simple exercise to see that the summation on the right-hand side can be

rewritten in the stated determinantal form.    □

For the case / = {s2, s4, s&,... }, the descent class of all alternating permuta-

tions, the polynomials Dj(q) are the ^-tangent and g-secant numbers. See Andrews

and Foata [2] for results and further references concerning these.

It is known that tableau quotients for two-row shapes with nonoverlapping rows

are distributive lattices under Bruhat order. In fact, such quotients are ordinary

quotients WJ where [S - J[ = 1, and Bruhat order is identical to left order and is

isomorphic to the inclusion ordering of Ferrers diagrams fitting into a rectangle, cf.

[21]. We now observe that this generalizes to all two-row shapes.

Suppose X/p has two rows, of length fc and /, respectively, which are overlapping

along m boxes:

k

D    1    1     1    I    I     M     1     1     1     '     '     '     '     '     '     '     '
m

Note that if w(9'x/li) is the set of row-order tableau words then w(9'x/li) is a lower

left interval of the ordinary quotient WJ, where J = S — (k,k + 1). This implies

that Bruhat order on 9~\/ll is identical to left order on <AM an(1 is a distributive

lattice which is isomorphic to the inclusion ordering of Ferrers diagrams fitting

into some fixed Ferrers diagram. The isomorphism, which is the restriction of the

isomorphism given in [21, p. 173], can be described as follows: For T E 9^/^, let

tp(T) = (dy,d2,... ,dk), where di is the number of entries in the bottom row of

T which are less than the ith entry of the top row. In other words, ip(T) is the

essential part of the inversion sequence of the row-order tableau word w(T). It is

clear that 0 < dy < d2 < ■ ■ ■ < dk < I, and that di < I — m + i — 1 for 1 < i < m.
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In other words, the Ferrers diagram whose row sizes are dk,dk-i,... ,dy fits into

the staircase-truncated rectangle R™^.

SL

Rk,A JA
i m

m

Conversely, any Ferrers diagram fitting into Rkll arises from ip(T), for a unique

T E 9x1^. Hence, rjj is a bijection 9^/^ —> [0, Rj^i], where the latter symbol stands

for the interval below Rkll in the Young lattice of all Ferrers diagrams ordered by

inclusion. It is also easy to see that ip is, in fact, an isomorphism. We now conclude

that:

THEOREM 9.4. For a two-row shape X/p as above, 9^/^ under Bruhat order

or left order is isomorphic to the poset of Ferrers diagrams fitting into Rkll ordered

by inclusion. In particular, 9^/^ is a distributive lattice.    □

We observe that Bruhat order on the tableau quotient Ck for the 2 x fc rectangular

shape (i.e., the case fc = / = m) is isomorphic to the lattice of Ferrers diagrams

fitting into the staircase diagram (fc — 1, fc — 2,..., 1). Its rank generating function

Ck(q) is a natural (/-analogue of the Catalan numbers, which has been studied by

L. Carlitz and others, see [15].

10. Appendix: Convexity. In [22] Tits introduced a notion of convexity

for Coxeter complexes. This can be translated into terms of left order of Cox-

eter groups, and in §5 we used this order-theoretic formulation to conclude that

generalized quotients are convex as subsets of the group.

In this appendix, we will give a direct approach to convexity in the order-

theoretic language of this paper. Tits' results will be proven along with some

added details.

Recall that a subset C of a Coxeter group W is called convex (under left order)

if for all u, w E C, every minimum length path from u to w in the Hasse diagram

of the left ordering of W is in C. Equivalently, if u, w E C and wu-1 = sys2 ■ ■ ■ sk

is a reduced expression then SjSj+i • • • sku E C for all 1 < j < fc.

Letfw = T-Tw-i ={tET\wt>B w}, for all w E W. For Xi,Xz,...,xn EW,

let Conv(zi,X25 • • • ,xn) denote the convex hull of the set X = {xi,x2,... ,xn}, i.e.,

the intersection of all convex sets that contain X. The following is equivalent to

Corollary 2.23 in [22].

THEOREM 10.1  (TITS).   Forx,yEW,

Conv(x,y) = {z E W [ fx f)fy C fx C fx UTy}

= {z E W I z is on a minimum length path from x to y}.
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PROOF. Let B and C be the second and third sets, respectively. We begin by

showing that B = C. Suppose that z is on a minimum length path from x to y.

Note that this is equivalent to saying that z = ux and z = vy for some u, v E W

such that (v~x)(u) is reduced. Suppose that t E TxnTy. Ii zt <b z then by Lemma

2.4, zt = ux and zt = vy, where u <B u and v <b v. It follows that ux — vy, which

implies that v~lii = yx"1 = v~1u. But this contradicts the fact that (v_1)(u) is

reduced. Hence, zt >b z, or equivalently, t ETZ, and therefore, Tx n Ty ETZ.

Now suppose that t E Tz. If t £TXU Ty then xt <b x and yt <b y. This means

that xtt >b xt and ytt >b yt. It follows that t E Txt nTyt. Since zt = uxt and zt =

vyt, we may repeat the argument in the preceding paragraph, substituting xt,yt,

and zt for x, y, and z, respectively, to conclude that ztt >b zt. But this contradicts

the assumption that t E fz. Hence, t E fxUTy and therefore, fz C fxUTy.

Combining this with the previous paragraph results in Tx D Ty C Tz E Tx U Ty.

Since z was an arbitrary element of C, we have C E B.

For the reverse inclusion suppose that z E B. Let a and b be such that z = ax

and y = bx. We shall show that a <l b, which is equivalent to showing that z is

on a minimum length path from x to y. According to Proposition 2.5, it suffices to

show that Tb ETa. Suppose t £Ta. Then at <b a. Let t' = x~ltx.

First we claim that zt' >b z implies xt' <b x and that zt' <b z implies xt' >b x.

Let zt' >b z. We have zt' = axt' = atx = ax, where a <b a. If xt' >b x then by

Lemma 2.4, z = zt't' = axt' = ax, where a <b a. It follows that a = a, which is

impossible. Hence, the first implication holds. The second implication follows from

the first implication with zt' and xt' playing the roles of z and x, respectively.

There are now two cases to consider.

Case 1. Suppose zt' <b z. Then by the above claim xt' >b x. Since Tx(lTy E

Tz, it follows that yt' <B y. By Lemma 2.4, we have that bxt' = bx, where b <b b.

But we also have that bxt' = btx. Hence, bt = b, or equivalently t £Tb. We may

now conclude that Tb ETa, for this case.

Case 2. Suppose zt' >b z. Again by the above claim, xt' <b x. Now since

Tz C fx U fy, we have yt' >B y. Since xt't' >B xt' and yt't' <B yt', it follows

from Lemma 2.4 that y = yt't' = bxt', where b <b b. But we also have that

y = bx = btxt'. Hence, bt = b, and just as in Case 1, Tb ETa.

Since Tb C Ta holds in both cases, we can conclude that z is on a minimum

length path from x to y, and therefore that B C C. Combining this with the

reverse inclusion gives B = C.

We shall now show that B is a convex set. Let u,v E B and let C be the set of

all elements on a minimum length path from u to v. We have already shown that if

zEC then funfv ETZE fuUTv. But since u,v E B, we have fxnfy C funfv

and fu U fv C fx U fy. It follows that fx (1 f'„ C fz C fx U fy, which implies that
C E B and hence that B is convex. A consequence of this is that Conv(x, y) E B.

Since the inclusion C C Conv(x,w) clearly holds, all three sets are identical.    □

COROLLARY 10.2.   Every left interval in W is a convex subset.      □

We define the rank of a convex set C to be the cardinality of a minimum car-

dinality set {xy,x2,... ,xm} such that C = Conv(i1,X2, • • • ,xm), if a finite such

set exists.  Thus rank(C) = 2 if and only if C = Conv(x, y) for some x / y.  For



GENERALIZED QUOTIENTS IN COXETER GROUPS 35

x, y E W, let d(x, y) denote the distance between x and y, i.e., the length of a mini-

mum length path from x to y in the Hasse diagram. Equivalently, d(x,y) = l(yx~x).

The diameter of a convex set C is defined to be the maximum distance d(x, y) over

all x,y E C, if such a maximum exists.

THEOREM 10.3. Let C C W be a convex set of rank 2 and diameter n. Then

for any x, y E C, C = Conv(x, y) if and only if d(x, y) = n.

PROOF. (=>) Clearly, d(x,y) < diam(C) = n. On the other hand, if a, b E

Convex, y) then by Theorem 10.1, there exist minimum length paths from x and y

through a and b. Let Py,P2,Ps,P4 be paths such that

Pi  Pi ,      P3.P4
x—a—y    and    x—0—y

are minimum length paths from x to y. Then

length(Pi) + length(P2) = length(P3) + length(P4) = d(x,y).

But then length(P,) + length(P3) < d(x,y) or length(P2) + length(P4) < d(x,y),

which shows that d(a, b) < d(x, y). Hence n = diam(C) < d(x,y).

(<=) Choose a,b E C so that C = Conv(a,b). Then by (=>) d(a,b) = n. It

suffices to show that a, b are on minimum length paths from x to u, since then

C = Conv(a,6) C Conv(x,y) C C. We know, by Theorem 10.1, that x,y are on

minimum length paths from a to b, say

P\   P2, ,      P3  Pi,
a—x—0    and    a—y—0,

where

length(Pi) + length(P2) = length(P3) + length(P4) = n.

Since d(x, y) = n, we also have that length(Pi) + length(P3) > n and length^) +

length(P4) > n. But since the sum of the lengths of the two paths from x to y

is 2n, both of these paths must have length n, which means that both paths are

minimum length paths.    □

We are now ready to prove Theorem 5.3, that is, Tits' characterization of convex

sets.

Proof of Theorem 5.3. (<=) Let x,y E W£. Then A c fx n fy and

fxufyET-D. If zE Conv(a;, y) then by Theorem 10.1, A C fz C T - D, which
means that z E Wfj. It follows that WA is convex. That WA is an order ideal

follows from Proposition 2.5, and also from the convexity since e E WA.

(=>) We prove this first for the case that C is an order ideal. Let M be the set

of minimal elements of W — C under left order and let

A = {w~lsw I w E M, s E S, sw <l w}.

We shall prove that C = WA.

Let u EWA. Suppose u £ C. Then there is some element w E M such that

w <l u. Let s E S be such that sw <l w and let t = w~1sw. Clearly, t E A

and t £ Tw. Since by Proposition 2.5, Tu C Tw, we have that t ^ Tu. But this

contradicts the fact that u E WA. Hence, u E C, and therefore, WA C C.

Now let uEC. Suppose u £ WA. Then there is some t E A such that ut <b u.

Since t E A, t = w~lsw for some w E M and s E S, where sw <l w. Note that
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fw U {t} = fsw. Since t £Tu,fuC\fsw ETW. It is also true that fw C fu U fsw.

Hence, by Theorem 10.1, w E Conv(u, sw). Since w is a minimal element of W — C

under left order, sw E C. This leads us to conclude that w EC, which contradicts

w E M. Hence, u E WA, and consequently, C = WA.

To prove the general case we need the following lemma.

LEMMA 10.4. Let u,v E W, and t E T. If u <b ut and v <B tv then

uv <b utv.

PROOF. Suppose that uv >b utv. Then uv >b t'uv, where t' = utu~x E T.

By Lemma 2.4, utv = t'uv = uv for some v <b v. It follows that tv = v, which

contradicts the assumption that tv >b v.    D

PROOF OF THEOREM 5.3 (CONTINUED). Let C be a general convex subset.

For any x E C, C ■ x~l is a convex order ideal. It follows from the order ideal case

that C = WE ■ x for some E ET. We will now show that WB ■ x = W£, where

A = {x~ltx [t EE, tx >b x} and D = {x~xtx [tEE, tx <b x}.

Let w E WE. To conclude that wx E W£, we need only show that for all

tEE, wx ■ x~~1tx >b wx if tx >b x, and wx ■ x~1tx <b wx if tx <b x. Since

wx-x~ltx = wtx, the former case follows immediately from Lemma 10.4. The latter

case also follows from Lemma 10.4, since tx <b x is equivalent to ttx >b tx, which

by the lemma implies that wx = w ■ t ■ tx >b wtx.

Conversely, suppose w £ WE. Let t E E be such that wt <b w. Now we show

that if tx >b x then wx ■ x~ltx <b wx, and if tx <b x then wx ■ x~1tx >b wx.

Again we apply Lemma 10.4 to both cases. In the former case, we have wt -t >b wt

and tx >b x which by Lemma 10.4 implies wx ■ x~ltx = wtx <b wt -t ■ x = wx. In

the latter case, we have wt ■ t >b wt and t ■ tx >b tx, which by Lemma 10.4 implies

wx ■ x~ltx = wtx = wt ■ t ■ tx >B wt ■ tx = wx.

This leads us to conclude that wx ^ WA, and hence that C = WE ■ x = W^.    D

Corollary 10.5. For xx,x2,...,xn e W,

ConvA..., xn) = {z e w | fXl n ■ • • n fXn c fz c fXl u • • • u fXn}.

PROOF. The right-hand side of the above equation is clearly equal to W£, where

A = fXl n • • • fl fXn and D = T - (fXl U • ■ ■ U fxJ. By Theorem 5.3, W$ is convex
and therefore contains the left-hand side. Also by Theorem 5.3, the left-hand side

is equal to WE for some E,F ET. Since xy, x2,..., xn E WE, we have E C TXi for

all i = 1,2,..., n. Hence, E C A and similarly, F ED.lt follows that WA C W§,

and hence that the two sets are equal.    □
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