Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Generalized Chebyshev polynomials associated with affine Weyl groups

Authors: Michael E. Hoffman and William Douglas Withers
Journal: Trans. Amer. Math. Soc. 308 (1988), 91-104
MSC: Primary 33A65; Secondary 42C05, 58F13
MathSciNet review: 946432
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We begin with a compact figure that can be folded into smaller replicas of itself, such as the interval or equilateral triangle. Such figures are in one-to-one correspondence with affine Weyl groups. For each such figure in $ n$-dimensional Euclidean space, we construct a sequence of polynomials $ {P_k}:{{\mathbf{R}}^n} \to {{\mathbf{R}}^n}$ so that the mapping $ {P_k}$ is conjugate to stretching the figure by a factor $ k$ and folding it back onto itself. If $ n = 1$ and the figure is the interval, this construction yields the Chebyshev polynomials (up to conjugation). The polynomials $ {P_k}$ are orthogonal with respect to a suitable measure and can be extended in a natural way to a complete set of orthogonal polynomials.

References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Groupes et algèbres de Lie, Chapitres IV, V, VI, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • [2] H. S. M. Coxeter, Regular polytopes (3rd ed.), Dover, New York, 1973. MR 0370327 (51:6554)
  • [3] N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
  • [4] C. Dunkl, Orthogonal polynomials on the sphere with octahedral symmetry, Trans. Amer. Math. Soc. 282 (1984), 555-575. MR 732106 (85a:33013)
  • [5] R. Eier and R. Lidl, A class of orthogonal polynomials in $ k$ variables, Math. Ann. 260 (1982), 93-99. MR 664368 (84d:33013)
  • [6] H. Hiller, Geometry of Coxeter groups, Pitman, Boston, Mass., 1982. MR 649068 (83h:14045)
  • [7] T. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, Theory and Application of Special Functions, R. Askey (ed.), Academic Press, New York, 1975. MR 0402146 (53:5967)
  • [8] -, Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. I-IV, Nederl. Akad. Wetensch. Proc. Ser. A 77 (Indag. Math.) 36 (1974), 48-66 and 357-381. MR 0340673 (49:5425a)
  • [9] I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979. MR 553598 (84g:05003)
  • [10] L. Mittag and M. J. Stephen, Yang-Lee zeros of the Potts model, J. Statist. Phys. 35 (1984), 303-320. MR 748078 (85d:82046)
  • [11] T. J. Rivlin, The Chebyshev polynomials, Wiley, New York, 1974. MR 0450850 (56:9142)
  • [12] H. Samelson, Notes on Lie algebras, Van Nostrand Reinhold, New York, 1969. MR 0254112 (40:7322)
  • [13] L. Schwartz, Mathematics for the physical sciences, Hermann, Paris, 1966. MR 0207494 (34:7309)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 33A65, 42C05, 58F13

Retrieve articles in all journals with MSC: 33A65, 42C05, 58F13

Additional Information

Keywords: Chebyshev polynomials, affine Weyl groups, orthogonal polynomials, reflection groups, root systems
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society