Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the complete $ {\rm GL}(n,{\bf C})$-decomposition of the stable cohomology of $ {\rm gl}\sb n(A)$


Author: Phil Hanlon
Journal: Trans. Amer. Math. Soc. 308 (1988), 209-225
MSC: Primary 17B55; Secondary 17B56
DOI: https://doi.org/10.1090/S0002-9947-1988-0946439-6
MathSciNet review: 946439
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a graded, associative $ {\mathbf{C}}$-algebra. For each $ n$ let $ g{l_n}(A)$ denote the Lie algebra of $ n \times n$ matrices with entries from $ A$.

In this paper we extend the Loday-Quillen theorem to nontrivial isotypic components of $ GL(n,\,{\mathbf{C}})$ acting on the Lie algebra cohomology of $ g{l_n}(A)$. For $ \alpha $ and $ \beta $ partitions of some nonnegative integer $ m$ let $ {[\alpha ,\,\beta ]_n} \in {{\mathbf{Z}}^n}$ denote the maximal $ GL(n,\,{\mathbf{C}})$-weight given by

$\displaystyle {[\alpha ,\,\beta ]_n} = \sum\limits_i {{\alpha _i}{e_i}} - \sum\limits_j {{\beta _j}{e_{n + 1 - j}}.} $

We show that the $ {[\alpha ,\,\beta ]_n}$-isotypic component of the Lie algebra cohomology of $ g{l_n}(A)$ stabilizes when $ n \to \infty $ and is equal to

$\displaystyle HR{C^{\ast}}(A) \otimes ({\tilde H^{\ast}}{(A;\,{\mathbf{C}})^{ \otimes m}} \otimes {S^\alpha } \otimes {S^\beta }){s_m}$

where $ {\tilde H^{\ast}}(A;\,{\mathbf{C}})$ is the reduced Hochschild cohomology of $ A$ with trivial coefficients, where $ HR{C^{\ast}}(A)$ is the graded exterior algebra generated by the cyclic cohomology of $ A$, where $ {S^\alpha }$ and $ {S^\beta }$ are the irreducible $ {S_m}$-modules indexed by $ \alpha $ and $ \beta $ and where the action of $ {S_m}$ on $ \tilde H{(A;\,{\mathbf{C}})^{ \otimes m}}$ is the exterior action.

References [Enhancements On Off] (What's this?)

  • [1] R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. (2) 38 (1937), 857-872. MR 1503378
  • [2] A. Connes, Noncommutative differential geometry, Part I, the Chern character in $ K$-homology, Publ. Math. Inst. Hautes Études Sci., 1983.
  • [3] T. G. Goodwillie, On the general linear group and Hochschild homology, Ann. of Math. (2) 121 (1985), 383-407. MR 786354 (86i:18013)
  • [4] A. Guichardet, Cohomologies des groupes topologique et algèbres de Lie, Textes Mathématiques, CEDIC/Fernand Nathan, 1980. MR 644979 (83f:22004)
  • [5] R. K. Gupta, Stable calculus of the mixed-tensor character of $ PGL(n)$, preprint.
  • [6] P. Hanlon, On the decomposition of the tensor algebra of the classical Lie algebras, Advances in Math. 56 (1985), 238-282. MR 792707 (88a:17011)
  • [7] -, Cyclic homology and the Macdonald conjectures, Invent. Math. 86 (1986), 131-159. MR 853448 (88b:17019)
  • [8] F. Harary and E. Palmer, Graphical enumeration, Academic Press, New York, 1973. MR 0357214 (50:9682)
  • [9] P. J. Hilton and U. Stammbach, A course in homological algebra, Springer-Verlag, Berlin and New York, 1971. MR 0346025 (49:10751)
  • [10] G. D. James, The representation theory of the symmetric group, Lecture Notes in Math., vol. 682, Springer-Verlag, Berlin and New York, 1978. MR 513828 (80g:20019)
  • [11] J. L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78 (1950), 65-127. MR 0036511 (12:120g)
  • [12] D. E. Littlewood, The theory of group characters, 2nd ed., Oxford Univ. Press, 1950.
  • [13] J. L. Loday, Homologies diédrale et quaternionique, Adv. in Math. 66 (1987), 119-148. MR 917736 (89e:18024)
  • [14] J. L. Loday and D. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), 565-591. MR 780077 (86i:17003)
  • [15] R. C. Read, A note on the number of functional digraphs, Math. Ann. 143 (1961), 109-110. MR 0120162 (22:10919)
  • [16] R. W. Robinson, Enumeration of non-separable graphs, J. Combinatorial Theory 9 (1970), 327-356. MR 0284380 (44:1608)
  • [17] I. Schur, Über eine Klasse von Matrizen die sich einer gegebenen Matrix zuordnen lassen, Dissertation, Berlin, 1901.
  • [18] R. P. Stanley, The stable behavior of some characters of $ SL(n,\,{\mathbf{C}})$, J. Linear and Multilinear Algebra 16 (1984), 3-27. MR 768993 (86e:22025)
  • [19] J. Stembridge, Rational tableaux and the tensor algebra of $ g{l_n}$, J. Combinatorial Theory A 46 (1987), 79-120. MR 899903 (89a:05012)
  • [20] B. L. Tsygan, Homology of matrix algebras over rings and the Hochschild homology, Uspehi Mat. Nauk 38 (1983), 217-218. (Russian) MR 695483 (85i:17014)
  • [21] H. Weyl, The classical groups, Princeton Univ. Press, Princeton, N.J., 1937.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B55, 17B56

Retrieve articles in all journals with MSC: 17B55, 17B56


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0946439-6
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society