Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Iwasawa's $ \lambda\sp -$-invariant and a supplementary factor in an algebraic class number formula


Author: Kuniaki Horie
Journal: Trans. Amer. Math. Soc. 308 (1988), 313-328
MSC: Primary 11R23; Secondary 11R20, 11R29
DOI: https://doi.org/10.1090/S0002-9947-1988-0946445-1
MathSciNet review: 946445
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ l$ be a prime number and $ k$ an imaginary abelian field. Sinnott [12] has shown that the relative class number of $ k$ is expressed by the so-called index of the Stickelberger ideal of $ k$, with a "supplementary factor" $ {c^ - }$ in $ \mathbb{N}/2 = \{ n/2\vert n \in \mathbb{N}\} $, and that if $ k$ varies through the layers of the basic $ {\mathbb{Z}_l}$-extension over an imaginary abelian field, then $ {c^ - }$ becomes eventually constant. On the other hand, $ {c^ - }$ can take any value in $ \mathbb{N}/2$ as $ k$ ranges over the imaginary abelian fields (cf. [10]). In this paper, we shall study relations between the supplementary factor $ {c^ - }$ and Iwasawa's $ {\lambda ^ - }$-invariant for the basic $ {\mathbb{Z}_l}$-extension over $ k$, our discussion being based upon some formulas of Kida [8, 9], those of Sinnott [12], and fundamental results concerning a finite abelian $ l$-group acted on by a cyclic group. As a consequence, we shall see that the $ {\lambda ^ - }$-invariant goes to infinity whenever $ k$ ranges over a sequence of imaginary abelian fields such that the $ l$-part of $ {c^ - }$ goes to infinity.


References [Enhancements On Off] (What's this?)

  • [1] B. Ferrero, Iwasawa invariants of abelian number fields, Math. Ann. 234 (1978), 9-24. MR 0485777 (58:5584)
  • [2] B. Ferrero and L. C. Washington, The Iwasawa invariant $ {\mu _p}$ vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), 377-395. MR 528968 (81a:12005)
  • [3] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952. MR 0049239 (14:141a)
  • [4] K. Horie, On the index of the Stickelberger ideal and the cyclotomic regulator, J. Number Theory 20 (1985), 238-253. MR 790784 (86j:11111)
  • [5] -, A note on basic Iwasawa $ \lambda $-invariants of imaginary quadratic fields, Invent. Math. 88 (1987), 31-38. MR 877004 (88i:11073)
  • [6] K. Iwasawa, A class number formula for cyclotomic fields, Ann. of Math. (2) 76 (1962), 171-179. MR 0154862 (27:4806)
  • [7] -, On $ {{\mathbf{Z}}_l}$-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246-326. MR 0349627 (50:2120)
  • [8] Y. Kida, $ l$-extensions of $ CM$-fields and cyclotomic invariants, J. Number Theory 12 (1980), 519-528. MR 599821 (82c:12006)
  • [9] -, Cyclotomic $ {{\mathbf{Z}}_2}$-extensions of $ J$-fields, J. Number Theory 14 (1982), 353-361.
  • [10] T. Kimura and K. Horie, On the Stickelberger ideal and the relative class number, Trans. Amer. Math. Soc. 302 (1987), 727-739. MR 891643 (88f:11103)
  • [11] W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. (2) 108 (1978), 107-134. MR 0485778 (58:5585)
  • [12] -, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234. MR 595586 (82i:12004)
  • [13] B. L. van der Waerden, Moderne Algebra. II, Springer-Verlag, Berlin, 1940. MR 0002841 (2:120b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11R23, 11R20, 11R29

Retrieve articles in all journals with MSC: 11R23, 11R20, 11R29


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0946445-1
Keywords: Basic $ {\mathbb{Z}_l}$-extension, Iwasawa's $ \lambda $-invariant, abelian field, Stickelberger ideal, class number
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society