Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


The blow-up surface for nonlinear wave equations with small spatial velocity

Authors: Avner Friedman and Luc Oswald
Journal: Trans. Amer. Math. Soc. 308 (1988), 349-367
MSC: Primary 35L70; Secondary 35B40
MathSciNet review: 946448
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the Cauchy problem for $ {u_{tt}} - {\varepsilon ^2}\Delta u = f(u)$ in space dimension $ \leqslant 3$ where $ f(u)$ is superlinear and nonnegative. The solution blows up on a surface $ t = {\phi _\varepsilon }(x)$. Denote by $ t = \phi (x)$ the blow-up surface corresponding to $ v'' = f(v)$. It is proved that $ \vert{\phi _\varepsilon }(x) - \phi (x)\vert \leqslant C{\varepsilon ^2}$, $ \vert\nabla ({\phi _\varepsilon }(x) - \phi (x))\vert \leqslant C{\varepsilon ^2}$ in a neighborhood of any point $ {x_0}$ where $ \phi ({x_0}) < \infty $.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35L70, 35B40

Retrieve articles in all journals with MSC: 35L70, 35B40

Additional Information

PII: S 0002-9947(1988)0946448-7
Article copyright: © Copyright 1988 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia