SOME INEQUALITIES FOR SINGULAR
CONVOLUTION OPERATORS IN L^p-SPACES

ANDREAS SEEGER

ABSTRACT. Suppose that a bounded function \(m \) satisfies a localized multiplier condition \(\sup_{t > 0} \| \phi m(t \cdot) \|_{M_p} < \infty \), for some bump function \(\phi \). We show that under mild smoothness assumptions \(m \) is a Fourier multiplier in \(L^p \). The approach uses the sharp maximal operator and Littlewood-Paley-theory. The method gives new results for lacunary maximal functions and for multipliers in Triebel-Lizorkin-spaces.

Introduction. Given a bounded function \(m \) the associated multiplier transformation \(T_m \) is defined by \([T_m f]^\wedge(\xi) = m(\xi) f^\wedge(\xi) \), \(f \in \mathcal{S}(\mathbb{R}^n) \). Here \(\mathcal{S} \) denotes the Schwartz space of rapidly decreasing \(C^\infty \)-functions and \(\mathcal{F} f = f^\wedge \) the Fourier transform. \(m \) is called a Fourier multiplier in \(L^p(\mathbb{R}^n) \) if \(T_m \) extends to a bounded operator in \(L^p(\mathbb{R}^n) \); the multiplier norm \(||m||_{M_p} \) equals the operator norm of \(T_m \).

Suppose that \(\phi \) is a radial \(C_0^\infty \)-function with compact support in \(\mathbb{R}_0^n = \mathbb{R}^n \setminus \{0\} \) and suppose that

\[
\|m\|_{\dot{M}_p} = \sup_{t > 0} \|\phi m(t \cdot)\|_{M_p} < \infty.
\]

The purpose of this paper is to find easily verified conditions that (1) implies \(m \in M_p \). The condition \(\|m\|_{\dot{M}_p} < \infty \) is satisfied if and only if \(m \) is a Fourier multiplier on the class of homogeneous Besov-spaces \(\dot{B}^p_{\infty q} \) (see Peetre [14, p. 132]). In fact the space \(M_p \) can be characterized by \(\dot{M}_p \); a theorem of Johnson [10] states that \(m \in M_p \) if and only if \(m(\cdot + y) \in \dot{M}_p \) for every \(y \in \mathbb{R}^n \). However, a straightforward verification of this condition seems to be impossible for many singular convolution operators.

In some applications it is useful to replace the ordinary dilations \(x \mapsto tx \) by anisotropic ones: \(x \mapsto t^P x = \exp(P \log t) x \), where \(P \) is a real \(n \times n \)-matrix with trace \(\nu \), the real parts of the eigenvalues being contained in \((a_0, a_0^0)\), \(a_0 > 0 \). Then we ask, under which conditions \(\sup_{t > 0} \|\phi m(t^P \cdot)\|_{M_p} < \infty \) implies \(m \in M_p \). Throughout this paper \(\phi \) will always be chosen as in the following

DEFINITION. \(\phi \in C_0^\infty(\mathbb{R}_0^n) \) satisfies a Tauber condition with respect to the dilations \((t^P) \) if for every \(x \neq 0 \) there is a \(t_x \) such that \(\phi(t_x^P x) \neq 0 \).

Sometimes we need special bump functions of the following kind: Let \(\rho \in C^\infty(\mathbb{R}_0^n) \) be a \(P \)-homogeneous distance function; this means that \(\rho(t^P x) = t \rho(x) \),
\(x \in \mathbb{R}^n, \ t > 0 \) and \(\rho(x) > 0, \ x \neq 0 \). Then we set \(\phi = \phi_0 \circ \rho \), where

(2) \(\phi_0 \in C_0^\infty(\mathbb{R}_+), \ \text{supp} \phi_0 \subset \left(\frac{1}{2}, 2\right), \ \sum_{k \in \mathbb{Z}} \phi_0(2^k s) = 1, \ \text{all } s > 0. \)

We note that every \(P \)-homogeneous distance function satisfies a triangle inequality
\(\rho(x + y) \leq b[\rho(x) + \rho(y)] \), for some \(b \geq 1 \).

It is easily seen that the condition \(\sup_{t > 0} \| \phi_m(t^{1/p}) \|_{M_p} < \infty \) is independent of the special choice of \(\phi \). In fact, assume that \(\phi, \bar{\phi} \) are chosen as in the definition. By a compactness argument, there are \(s_0, \ldots, s_N > 0 \) such that \(\sum_{i=1}^N \phi^2(s_i^p x) > 0 \) for all \(x \in \text{supp} \phi \). Since \(M_1 M_p \subset M_p \), we have

\[
\| \phi_m(t^{1/p}) \|_{M_p} \leq c \sum_{i=0}^N \| \phi^2(s_i^p x) m(t^{1/p}) \|_{M_p}
\]

\[
\leq c \sum_{i=0}^N \| \phi(\cdot) m \left(\left(\frac{t}{s_i} \right)^p \cdot \right) \|_{M_p} \leq c \sup_{s > 0} \| \phi_m(s^{1/p}) \|_{M_p}.
\]

We are most interested in the cases \(1 < p < \infty \). For \(p = 1 \) a satisfactory result is the Hörmander multiplier criterion \([9]\). Here the condition \(\sup_{t > 0} \| \phi_m(t^{1/p}) \|_{M_1} < \infty \) is replaced by the somewhat stronger assumption

(3) \(\sup_{t > 0} \int_{|x| \geq \omega} |\mathcal{F}^{-1}[\phi_m(t^{1/p})]| \, dx \leq B(1 + \omega)^{-\varepsilon}, \ \text{all } \omega > 0. \)

(3) implies that \(T_m \) is of weak type \((1,1)\) and \(m \in M_p, \ 1 < p < \infty \). The usual assumption

\[
\sup_{t > 0} \| \phi m(t^{1/p}) \|_{\mathcal{L}_2^\alpha} < \infty, \ \alpha > n/2,
\]

(\(\mathcal{L}_2^\alpha \) denoting the Bessel-potential space as in Stein \([18]\)) implies (3) for some \(B \), if \(\varepsilon < \alpha - n/2 \).

We use the following notations: \(\mathcal{S}_0 \) denotes the subspace of Schwartz functions whose Fourier transforms are compactly supported in \(\mathbb{R}^n_0 \). \(\Delta_h \) is the difference operator, \(\Delta_h f = f(\cdot + h) - f(\cdot) \). The Lipschitz space \(\Lambda_\varepsilon \) is normed by

\[
\| f \|_{\Lambda_\varepsilon} = \| f \|_\infty + \sup_{h} |h|^{-\varepsilon} \| \Delta_h f \|_{\infty}, \ \text{if } 0 < \varepsilon < 1.
\]

By \(|S| \) we denote the Lebesgue measure of a set \(S \). The barred integral \(\int_S f \) denotes the mean value \(|S|^{-1} \int_S f(y) \, dy \). \(c \) will be a general constant with different values in different occurrences.

1. Main result.

THEOREM 1. Suppose that \(m \) is a bounded function which satisfies for some \(p \), \(1 < p < \infty, \ \varepsilon > 0 \)

(i) \(\sup_{t > 0} \| \phi_m(t^{1/p}) \|_{M_p} \leq A, \)

(ii) \(\sup_{t > 0} \int_{|x| \geq \omega} |\mathcal{F}^{-1}[\phi_m(t^{1/p})]| \, dx \leq B(1 + \omega)^{-\varepsilon}. \)
Then

\[\|m\|_{M_p} \leq cA[\log(2 + B/A)]^{1/p - 1/2}. \]

Remark. Of course, condition (ii) alone implies \(m \in M_p, 1 < p < \infty \), with multiplier norm \(\leq cB \), which may however be much larger than the constant in the theorem. This constant is actually sharp; it cannot be replaced by \(A[\log(2 + B/A)]^{\gamma} \) with \(\gamma < |1/p - 1/2| \). This can be seen by a well-known counterexample of Littman, McCarthy, Rivière [12], modified in Triebel’s monograph [19]. Choose \(\phi \) as in (2) and vectors \(\sigma_k \), satisfying \(\rho(\sigma_k) = (2b)^k \). Define

\[m_N(\xi) = \sum_{k=N}^{2N} e^{i\sigma_k \xi} \phi(\xi - \sigma_k). \]

Since \(\|\phi m_N(Ae^\cdot)\|_{M_p} \leq c \) and \(\|D^\alpha[\phi m_N(Ae^\cdot)]\|_{M_p} \leq c2^{\alphaN^2} \) for all multi-indices \(\alpha \), Theorem 1 implies \(\|m_N\|_{M_p} \leq c_pN^\gamma(p) \), with \(\gamma(p) = |1/p - 1/2| \).

On the other hand, the discussion in [19, p. 125] shows that \(\|m_N\|_{M_p} \geq c_pN^\gamma(p) \).

The counterexample shows that the condition (1) alone does not imply \(m \in M_p \). In the following corollaries we shall see that this is valid under weak smoothness assumptions on \(m \). The proof of Theorem 1 is given in §2.

Corollary 1. Suppose that for some \(1 < p < \infty \)

(i) \[\sup_{t > 0} \|\phi m(t^P \cdot)\|_{M_p} \leq A_0, \]

(ii) \[\sup_{t > 0} \int_{|h| \leq 2^{-i}} \|\Delta_h[\phi m(t^P \cdot)]\|_{M_p} dh \leq A_i. \]

Then

\[\|m\|_{M_p} \leq A_0 + \sum_{l > 1} l|1/p - 1/2|A_l. \]

Proof. We may choose \(\phi \) as in (2). Let \(\psi \) be a \(C^\infty \)-function, supported in \(\{\rho(\xi) \leq (8b)^{-1}\} \), \(\int \psi(\xi) d\xi = 1 \). Further set \(\psi_l = 2^{ln}\psi(2^l \cdot), \chi_l = \psi_l - \psi_{l-1} (l \geq 1), \chi_0 = \psi_0 \).

We split

\[m = \sum_{j \in \mathbb{Z}} \phi(2^{-j}t^P \cdot)m \]

\[= \sum_{j \in \mathbb{Z}} \sum_{l \geq 0} [\chi_l * (\phi m(2^j t^P \cdot))](2^{-j}t^P \cdot) =: \sum_{l \geq 0} m_l. \]
Set \(g_j = \phi m(2^jP) \). Then \(\chi_l \ast g_j \) is supported in \(\{ \frac{1}{4} \leq \rho(\xi) \leq 4 \} \). If \(l \geq 1 \), we have for \(2^k \leq s \leq 2^{k+1} \) \((\delta \) denoting Dirac measure)

\[
\|\phi m(s^P')\|_{M_p} \leq c \sum_{j=k-4}^{k+4} \|\chi_l \ast g_j\|_{M_p}
\]

\[
\leq c \sum_{j=k-4}^{k+4} \|(\delta - \psi_{l-1}) \ast g_j + (\psi_l - \delta) \ast g_j\|_{M_p}
\]

\[
\leq c \sum_{j=k-4}^{k+4} \int |\psi_l(\eta)|\|\Delta_\eta g_j\|_{M_p} \, d\eta + \int |\psi_{l-1}(\eta)|\|\Delta_\eta g_j\|_{M_p} \, d\eta
\]

\[
\leq c \sum_{j=k-4}^{k+4} \int |\psi_l(\eta)|\|\Delta_\eta g_j\|_{M_p} \, d\eta + \int |\psi_{l-1}(\eta)|\|\Delta_\eta g_j\|_{M_p} \, d\eta
\]

\[
\leq c(A_{l-1} + A_l).
\]

For all multi-indices \(\alpha \) it follows by a similar computation \((2^k \leq s \leq 2^{k+1})\)

\[
\|D^\alpha(\phi m_l(s^P'))\|_2 \leq c \sum_{j=k-4}^{k+4} \sum_{\beta \leq \alpha} \int |\psi_l(\eta)|\|\Delta_\eta g_j(\xi - 2^{-l}\eta) - g_j(\xi - 2^{-l+1}\eta)\|_{\infty} \, d\eta
\]

\[
\leq c 2^{|\alpha|}(A_{l-1} + A_l).
\]

Now we apply Theorem 1 and obtain

\[
\|m_l\|_{M_p} \leq c l^{1/p-1/2}(A_{l-1} + A_l), \quad l \geq 1.
\]

Analogously \(\|m_0\|_{M_p} \leq c A_0 \), and the assertion follows by summation.

Corollary 2. Suppose that \(\sup_{t>0} \|\phi m(t^P')\|_{M_p} < \infty \), for some \(p \in (1, \infty) \).

(i) If for some \(\varepsilon > 0 \)

\[
\sup_{t>0} \sup_{h \in \mathbb{R}^n} |h|^{-\varepsilon}\|\Delta_h [\phi m(t^P')]\|_{M_p} < \infty
\]

then \(m \in M_p \).

(ii) If \(\sup_{t>0} \|\phi m(t^P')\|_{\Lambda_2} < \infty \), then \(m \in M_{\dot{r}}, \ |1/r - 1/2| < |1/p - 1/2| \).

Proof. (i) is weaker than the assertion of Corollary 1. (ii) then follows by interpolating the inequalities

\[
\|\Delta_h [\phi m(t^P')]\|_{M_p} \leq c, \quad \|\Delta_h [\phi m(t^P')]\|_{M_2} \leq c |h|^\varepsilon.
\]

2. Proof of Theorem 1.

2.1. Some tools needed in the proof. Let \(r \) be a distance function, homoge-
neous with respect to the adjoint dilations \(t^{P^*} \), satisfying a triangle inequality with
constant \(b \). Let \(\mathcal{W} \) be the collection of all \(r \)-balls

\[
Q = \{ x; r(x_0 - x) \leq 2^k \}, \quad x_0 \in \mathbb{R}^n, \ k \in \mathbb{Z},
\]

\(x_0 \) is the "center" of \(Q \), \(2^k = \text{rad } Q \) its "radius".

The Hardy-Littlewood maximal operator with respect to \(\mathcal{W} \) is defined for functions with values in a Banach-space \(B \) by

\[
\mathcal{M} f(x) = \sup_{x \in Q \in \mathcal{W}} \int_Q |f(y)|_B \, dy.
\]
By $f^\#$ we denote the Fefferman-Stein sharp maximal function, defined by

$$
 f^\#(x) = \sup_{x \in Q} \int_Q |f(y) - f|_B \, dy.
$$

The basic fact about $f^\#$ is

Proposition. Assume that $1 < p < \infty$, $1 < p_0 < P$ and $f \in L^{p_0}(\mathbb{R}^n, \mathcal{L})$. If $f^\# \in L^P(\mathbb{R}^n)$, then $\mathcal{M} f \in L^P(\mathbb{R}^n)$ and $\|\mathcal{M} f\|_p \leq c\|f^\#\|_p$.

The proof is an adaptation of the proof given by Fefferman and Stein [8] in the more general setting of homogeneous spaces (see [15]). Another tool needed in the proof is Littlewood-Paley theory [18, 13]. Let $\phi \in C^\infty_0(\mathbb{R}^n)$ and $\eta_k = \mathcal{F}^{-1}[\phi(2^{-kP} \cdot)]$, $g(f) = (\sum_{k \in \mathbb{Z}} |\eta_k * f|^2)^{1/2}$. Then $\|g(f)\|_p \leq c\|f\|_p$, $1 < p < \infty$. We will choose $\phi = \Phi_0 * \rho$ as in (1). Then we also have $\|f\|_p \leq c\|g(f)\|_p$, $1 < p < \infty$. Let $\tilde{\phi} \in C^\infty_0(\mathbb{R}^n)$ be equal to 1 on supp ϕ. Then we associate to $\tilde{\phi}$ in the same way the functions $\tilde{\eta}_k$ and $\tilde{g}(f)$.

2.2. **Proof of the theorem.** By duality we may assume $2 \leq p < \infty$. We associate to $T = T_m$ a vector-valued operator \tilde{T}, defined by $[\tilde{T}f]_k = \eta_k * Tf$. We will show that

$$
 \|([\tilde{T}f]^*)_k\|_p \leq cAN^{1/2-1/2^p} \|f\|_p
$$

where

$$
 N = \max(\varepsilon^{-1}, a_0^{-1}) \log_2(2 + B/A).
$$

If $f \in \mathcal{S}$, \tilde{T} is a priori in $L^p(\ell^2)$. By Littlewood-Paley theory and the Fefferman-Stein inequality we get

$$
 \|Tf\|_p \leq c_1 \|g(Tf)\|_p = c_1 \|\tilde{T}f\|_{L^p(\ell^2)}
\leq c_1 \|\mathcal{M} (\tilde{T}f)\|_p = c_2 \|([\tilde{T}f]^*)_k\|_p \leq c_3 AN^{1/2-1/p} \|f\|_p.
$$

It remains to prove (4). In order to apply interpolation arguments it is useful to linearize the operator $f \mapsto (\tilde{T}f)^\#$. Fix $f \in L^p$. Following [8, p. 157] we may find for each $x \in \mathbb{R}^n$ a ball $Q_x \in \mathcal{W}$ containing x, the center and the radius being measurable functions of x, further functions $\chi_k(x, y)$, with $(\sum |\chi_k(x, y)|^2)^{1/2} \leq 1$, $x \in \mathbb{R}^n$, $y \in Q_x$, such that the following inequality holds:

$$
 ([\tilde{T}f]^*_k)(x) \leq 2Sf(x)
$$

where

$$
 Sf(x) = \int_{Q_x} \sum_{k \leq l(x)} \left[\eta_k * Tf(y) - \int_{Q_x} \eta_k * Tf(z) \, dz \right] \chi_k(x, y) \, dy.
$$

Define $l(x)$ by $\text{rad } Q_x = 2^{l(x)}$. Instead of S we consider the following operators σ_1, σ_2 acting on sequence-valued functions $F = \{f_k\}$, $H = \{h_k\}$.

$$
 \sigma_1(F, x) = \int_{Q_x} \sum_{|k| \leq l(x)} \left[\tilde{\eta}_k * f_k(y) - \int_{Q_x} \tilde{\eta}_k * f_k \chi_k(x, y) \right] \chi_k(x, y) \, dy,
$$

$$
 \sigma_2(H, x) = \int_{Q_x} \sum_{|k| > l(x)} \left[\eta_k * T_h_k(y) - \int \eta_k * T_h_k \chi_k(x, y) \right] \chi_k(x, y) \, dy.
$$
In 2.3 and 2.4 we will show that
\begin{equation}
\|\sigma_1(F)\|_p \leq cN^{1/2 - 1/p}\|F\|_{L^p(I^p)}
\end{equation}
and
\begin{equation}
\|\sigma_2(H)\|_p \leq cA\|H\|_{L^p(I^2)},
\end{equation}
the constant c being independent of A, N and the choice of Q_x, \chi_k(x,y). We proceed by observing
\[Sf = \sigma_1(\{\eta_k * Tf\}) + \sigma_2(\{\tilde{\eta}_k * f\}). \]
By Littlewood-Paley theory (9) implies
\[\|\sigma_2(\{\tilde{\eta}_k * f\})\|_p \leq cA\|f\|_p. \]
Using the hypothesis (i) we get
\[\|\{\eta_k * Tf\}\|_{L^p(I^p)}^p = \sum \|\eta_k * T(\tilde{\eta}_k * f)\|_p^p \leq A^p \sum \|\tilde{\eta}_k * f\|_p^p \leq A^p \|\{\eta_k * f\}\|_{L^p(I^2)}^p \leq cA^p\|f\|_p^p \]
and from (8) we conclude
\[\|\sigma_1(\{\eta_k * Tf\})\|_p \leq cAN^{1/2 - 1/p}\|f\|_p. \]
These estimates imply (4).

2.3. Estimation of $\sigma_1(F)$. Since $\sigma_1(F) \leq 2\mathcal{M}[\sum_k |\eta_k * F_k|^2]^{1/2}$, it follows by L^2-boundedness of \mathcal{M}
\[\|\sigma_1(F)\|_2 \leq c \left(\sum_k \|\eta_k * F_k\|_2^2 \right)^{1/2} \leq c'\|F\|_{L^2(I^2)}. \]
If $p = \infty$, we have
\[\|\sigma_1(F)\|_\infty \leq \left\| \mathcal{M} \left[\sup_{l \in \mathbb{Z}} \left(\sum_{|k+l| \leq N} |\eta_k * F_k|^2 \right)^{1/2} \right] \right\|_\infty \leq cN^{1/2} \sup_{k \in \mathbb{Z}} \|\eta_k * F_k\|_\infty \leq c'N^{1/2}\|F\|_{L^\infty(I^2)}. \]
Now an application of the Riesz-Thorin interpolation theorem establishes (8).

2.4. Estimation of $\sigma_2(H)$. The operator $\sigma_2(H)$ represents the "remainder"-terms similarly treated as in the Calderón-Zygmund theory. By L^2-boundedness of \mathcal{M} and the Plancherel theorem we get
\[\|\sigma_2(H)\|_2^2 = \sum_k \|\eta_k * Th_k\|_2^2 \]
\[= \|\phi(2^{-kP}. mh_k)^2 \|_2 \leq A^2 \sum_k \|h_k\|_2^2 = A^2\|H\|_{L^2(I^2)}^2. \]
We show
\begin{equation}
\|\sigma_2(H)\|_\infty \leq cA\|H\|_{L^\infty(I^2)}
\end{equation}
and (9) follows by interpolation.
We need a further splitting of σ_2. Denote by R_x the ball with same center as Q_x and ${\text{rad}} R_x = 2b {\text{rad}} Q_x$. For a function H we denote by $R_x H$ multiplication with the indicator function of R_x; similarly define $R_x^c H$ for the complement R_x^c. We have the majorization $\sigma_2(H, x) \leq I(x) + II(x)$, where

$$I(x) = \int_{Q_x} \left(\sum_k |\eta_k * T(R_x h_k)(y)|^2 \right)^{1/2} dy$$

and

$$II(x) = \int_{Q_x} \left(\sum_{|k+l(x)| > N} |\{\eta_k * T(R_x^c h_k)(y) - \int \eta_k * T(R_x^c h_x)(z) dz\}|^2 \right)^{1/2} dy.$$

By Hölder’s inequality and Plancherel’s theorem we get

$$|I(x)| \leq |Q_x|^{-1/2} \left(\sum_k \|\eta_k * T(R_x h_k)\|_2^2 \right)^{1/2}$$

$$\leq |Q_x|^{-1/2} A \left(\sum_k \|R_x h_k\|_2^2 \right)^{1/2}$$

$$\leq c A \int_{R_x} \sum_k |h_k(y)|^2 dy$$

$$\leq c A \|H\|_{L^\infty(l^2)}.$$

To estimate $II(x)$ set $K_k(x) = \mathcal{F}^{-1}[\phi m(A_{2^k} \cdot)]$. Then with

$$E_k(x, y, z) = \int_{R_x^c} 2^{k\nu} |K_k(2^k P^* (y - w)) - K_k(2^k P^* (z - w))| dw,$$

it happens that

$$E_k(x, y, z) \leq c B \min\{2^{-\epsilon(k+l(x))}, 2^{-a_0(k+l(x))}\},$$

whenever $y, z \in Q_x$.

Summing a geometrical series we obtain

$$||I(x)|| \leq \sup_{y, z \in Q_x} \left(\sum_{|k+l(x)| > N} [E_k(x, y, z)]^2 \right)^{1/2} \|H\|_{L^\infty(l^\infty)}$$

$$\leq c B \max\{2^{-\epsilon N}, 2^{-a_0 N}\} \|H\|_{L^\infty(l^\infty)}$$

$$\leq c A \|H\|_{L^\infty(l^\infty)} \leq c A \|H\|_{L^\infty(l^2)}.$$

(11) follows by a standard calculation. Denote by x_0 the center of R_x. Then for $w \in R_x^c, y \in Q_x$

$$r(y - w) \geq r(x_0 - w)/b - r(x_0 - y) \geq 2^{l(x)};$$

hence

$$E_k(x, y, z) \leq 2 \int_{r(u) \geq 2^{l(x)}} 2^{k\nu} |K_k(2^k P^* u)| du \leq c B 2^{-(k+l(x))\epsilon}$$
by hypothesis (ii). If \(k + l(x) < -N \), we use the fact that \(\hat{\phi} * K_k = K_k \) and obtain by Taylor’s formula

\[
E_k(x, y, z) \leq 2 \int_0^1 \int_{R^d_x} |2^{k\nu}[(2^{kP^*}(y - z) \cdot \nabla)K_k](2^{kP^*}(z - w + sy - sz))| \, dz \, ds
\]

\[
\leq c \|2^{kP^*}(y - z) \cdot \nabla|\hat{\phi} * K_k\|_1
\]

\[
\leq c \|2^{kP^*}(y - z) \cdot \nabla|\hat{\phi}\|_1 \|K_k\|_1
\]

\[
\leq cB2^{(k+l(z))a_0},
\]

if \(y, z \in R_x \).

This completes the estimation of \(\sigma_2(H) \) and concludes the proof of the theorem.

3. Some variants and applications.

3.1. The case \(p = 1 \). There is a simpler counterpart of Theorem 1.1 for \(p = 1 \) which strengthens slightly the Hörmander multiplier criterion. It involves a weak-type \((1,1)\) and an \((P_{1,1})\)-estimate for the operator \(T_m \). Here \(H^1 \) is the parabolic Hardy-space, defined as in [1] with respect to the \((tP^*)\)-dilations.

THEOREM 2. Suppose that the hypotheses (i), (ii) of Theorem 1 are satisfied with \(p = 1 \). Then

(a) \(\|T_m f\|_1 \leq cA \log(2 + B/A)^{1/2} \|f\|_{H^1} \).

(b) \(\sup_{\alpha > 0} \alpha \{ |T_m f| > \alpha \} \leq cA \log \left(2 + \frac{B}{A} \right) \|f\|_1 \).

For \(\alpha > 0 \) we use the atomic decomposition (see Latter and Uchiyama [11]). Let \(a \) be an atom, supported in \(\{r(x_0 - x) \leq 2^l \} \), \(\|a\|_\infty \leq c2^{-l\nu} \). Choose \(N \) as in the proof of Theorem 1 and split \(T_a = T_{1,1}a + T_{1,2}a \), where \(T_{1,1}a = \sum_{|k+l| \leq N} \eta_k * Ta \). Using the standard Calderón-Zygmund estimates it follows

\[
\|T_{1,2}a\|_1 \leq cB \max(2^{-\varepsilon N}, 2^{-a_0 N}) \|a\|_1 \leq cA.
\]

Further

\[
\|T_{1,1}a\| \leq A \left\| \sum_{|k+l| \leq N} \eta_k * a \right\|_1
\]

\[
\leq cAN^{1/2} \left(\sum_k \left| \eta_k * a \right|^2 \right)^{1/2} \leq c'AN^{1/2},
\]

by Littlewood-Paley theory in \(H^1 \).

The proof of (b) is similar and involves a Calderón-Zygmund decomposition. We can only achieve the larger constant \(cAN \), because Littlewood-Paley functions do not define bounded operators in \(L^1 \).

REMARK. The counterexample \(m_N \) mentioned in §1 shows that the constants in Theorem 2 are sharp. For the \((H^1, L^1)\)-estimate this follows from [19, p. 125]. The essential part of the kernel \(\mathcal{F}^{-1}m_N \) lies near the points \(\sigma_k, N \leq k \leq 2N \), and a straightforward computation shows that \(\|\mathcal{F}^{-1}m_N\|_{L^{1,\infty}} \geq cN \) (\(L^{1,\infty} \) denotes the Lorentz-space). Let \(\chi \in \mathcal{S}, \hat{\chi}(\xi) = 1 \) near 0, \(\chi_l = 2^{l\nu} \chi(2^{lP^*}) \). For large \(l \)
we have $T_{m_N} \chi_l = \mathcal{F}^{-1} [m_N]$; this implies $\| T_{m_N} \|_{(L^1, L^{1,\infty})} \geq cN$ for the weak-type operator-"norm" of T_{m_N}.

3.2. Application to quasiradial multipliers.

Corollary 3. Let $\rho \in C^\infty(\mathbb{R}^n_0)$ be a P-homogeneous-distance function and $m = m_0 \circ \rho$, where $m_0 \in L^\infty(\mathbb{R}^+)$ and $m_0 \in L^1(\mathbb{R}_+)$, $m_0 \circ \rho$. Suppose that for some p, $1 \leq p < 2n/(n + 1)$,

$$\sup_{t > 0} \| \phi m_0 \circ t \rho \|_{M_p} < \infty.$$

Then $m_0 \circ \rho \in M_r$, $p < r \leq 2$.

Proof. The smoothness assumption of Corollary 2, (ii) is satisfied, since the necessary conditions for quasiradial multipliers [17] imply

$$\sup_{t > 0} \| \phi m_0 (t \cdot) \|_{B^p_{\alpha p}(\mathbb{R}^n)} \leq c \sup_{t > 0} \| \phi m_0 \circ t \rho \|_{M_p},$$

$\alpha = (n - 1)(1/p - 1/2)$. Here $\phi_0 \in C^\infty_0(\mathbb{R}^n_0)$ and $B^p_{\alpha p}(\mathbb{R})$ is the standard Besov space defined in [19]. Now $B^p_{\alpha p} \subset \Lambda^p_\varepsilon$ if $0 < \varepsilon < \alpha - 1/p'$ and $\alpha - 1/p' > 0$ if $p < 2n/(n + 1)$. The assertion follows from Corollary 2 and the elementary inequality

$$\| \phi_0 \circ pm_0 \circ t \rho \|_{\Lambda^p_\varepsilon(\mathbb{R}^n)} \leq c \| \phi_0 m_0 (t \cdot) \|_{\Lambda^p(R)}.$$

The following criterion for quasiradial multipliers is proved in [16].

Corollary 4. Let $\rho \in C^\infty(\mathbb{R}^n_0)$, the unit sphere $\{ \rho(\xi) = 1 \}$ being strictly convex. Then

$$\| m_0 \circ \rho \|_{M_p} \leq c \sup_{t > 0} \| \phi m_0 (t \cdot) \|_{L^\alpha_{\beta}(\mathbb{R})},$$

$\alpha > n[1/p - 1/2]$, $1 < p \leq 2(n + 1)/(n + 3)$.

The condition $\sup_{t > 0} \| \phi m \circ t \rho \|_{M_p} < \infty$ can be verified following Stein’s treatment of the Bochner-Riesz multiplier [7, 16]. The approach via Corollary 2 considerably simplifies the proof of Corollary 4 in [16]. It avoids also the weighted norm inequality in Christ’s proof of (essentially) the same result (see [3]).

3.3. Lacunary maximal operators. Given a multiplier m, we define for $f \in \mathcal{S}$ the lacunary maximal operator T^*_m by

$$T^*_m f = \sup_{k \in \mathbb{Z}} |\mathcal{F}^{-1} [m(2^k P \cdot) \hat{f}]|.$$

To prove boundedness results for T_m we shall need information about a vector-valued singular integral operator τ, defined for functions $F = \{F_{k,l}\}$ with values in $l^2(\mathbb{Z}^2)$ by

$$[\tau(F)]_k = \sum_l \eta_{k+l} * F_{k,l}.$$

Lemma. $\| \tau(F) \|_{L^p(l^2(\mathbb{Z}))} \leq c \| F \|_{L^p(l^2(\mathbb{Z}^2))}$, $1 < p < \infty$.

Proof. For $p = 2$ the inequality follows by Plancherel’s theorem. Then for $p < 2$, by Calderón-Zygmund theory we are led to verify the following weak Hörmander condition

$$\int_{|x| \geq 2bt \sum_k \sum_l |\eta_{k+l}(x - y) - \eta_{k+l}(x)| \alpha_{k,l}}^{1/2} dx \leq c \left(\sum_k \sum_l \alpha^2_{k,l} \right)^{1/2},$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
whenever \(r(y) \leq t \), \((\alpha_{k,l}, t)^{e} \in l^{2}(Z^{2})\). The verification of (12) is a routine matter, so it is omitted. The case \(p > 2 \) follows by observing that the adjoint \(\tau^{*} \) is similarly defined as \(\tau \) \((k,l \, \text{are exchanged}) \). □

Theorem 3. Suppose that for some \(1 < p < \infty \), \(r = \min(p, 2) \), \(\varepsilon > 0 \)

\[
\left(\int_{0}^{\infty} \| \phi m(t^{P})\|_{M_{p}}^{r} \frac{dt}{t} \right)^{1/r} < \infty,
\]

\[
\left(\int_{0}^{\infty} \left[\sup_{h} |h|^{-\varepsilon} \| \Delta h \phi m(t^{P})\|_{M_{p}} \right] \frac{dt}{t} \right)^{1/r} < \infty.
\]

Then

\[
\left\| \left(\sum_{k} |\mathcal{F}^{-1}[m(2^{k}P^{k})f^{k}]|^{2} \right)^{1/2} \right\|_{p} \leq c\|f\|_{p}.
\]

Proof. Choose \(\phi \) as in (2),

\[
a_{t} = \| \phi m(2^{k}P^{k})\|_{M_{p}}, \quad b_{t} = \sup |h|^{-\varepsilon} \| \Delta h [\phi m(2^{l}P^{l})]\|_{M_{p}}.
\]

Then the hypotheses of the theorem are equivalent with \(\sum (a_{t}^{2} + b_{t}^{2}) < \infty \); this essentially requires the same argument as in the Introduction.

We apply the lemma with \(F_{k,t} = \mathcal{F}^{-1}[^{\phi} (2^{-(k+l)}P^{k})]m(2^{k}P^{k})f^{k} \) to deduce

\[
\left\| \left(\sum_{k} |\mathcal{F}^{-1}[m(2^{k}P^{k})f^{k}]|^{2} \right)^{1/2} \right\|_{p} \leq \left\| \left(\sum_{k,l} |F_{k,l}|^{2} \right)^{1/2} \right\|_{p}.
\]

If \(p > 2 \) we have by Minkowski’s inequality

\[
\left\| \left(\sum_{k,l} |F_{k,l}|^{2} \right)^{1/2} \right\|_{p} \leq \left(\sum_{l} \left\| \left(\sum_{k} |F_{k,l}|^{2} \right)^{1/2} \right\|_{p} \right)^{1/2},
\]

whereas if \(p < 2 \) we use \(l^{p} \subset l^{2} \) and interchange summation and integration to get

\[
\left\| \left(\sum_{k,l} |F_{k,l}|^{2} \right)^{1/2} \right\|_{p} \leq \left(\sum_{l} \left\| \left(\sum_{k} |F_{k,l}|^{2} \right)^{1/2} \right\|_{p} \right)^{1/p}.
\]

Denote by \(r_{k} \) the sequence of Rademacher functions (see [18, p. 276]) and let

\[
m_{l,s} = \sum_{k} r_{k}(s) \overline{\phi}(2^{-(k+l)}P^{k})m(2^{k}P^{k}), \quad s \in [0, 1].
\]

An application of Corollary 1.2 gives

\[
\|m_{l,s}\|_{M_{p}} \leq \sum_{j=-3}^{3} a_{t+j} + b_{t+j}, \quad \text{uniformly in } s \in [0, 1].
\]
By Chinchin's inequality and interchanging the order of integrals we see
\[\left\| \left(\sum_k |F_{k,l}|^2 \right)^{1/2} \right\|_p \leq c \int_0^1 \| m_{l,\alpha} \|_{M_p}^p \, dx \leq c \sum_{j=-3}^{3} a_{l+j}^p + b_{l+j}^p. \]

Now summation over \(l \) proves the assertion. \(\square \)

Of course, Theorem 3 implies boundedness of \(T_m^* \) in \(L^p \). For \(p > 2 \) there is a simpler result which follows from Littlewood-Paley theory and does not rely on Theorem 1.

Corollary 5. Suppose \(2 \leq p < \infty \) and
\[\left(\int_0^\infty \| \phi_m(tP^\cdot) \|_{M_p}^2 \frac{dt}{t} \right)^{1/2} < \infty. \]
Then \(\| T_m^* f \|_p \leq c \| f \|_p \).

Proof. We use the inequality
\[\left\| \sum_l \eta_l * g_l \right\|_p \leq \left(\sum_l |g_l|^2 \right)^{1/2}, \]
\(1 < p < \infty \), which, by duality, is a consequence of Littlewood-Paley theory. Now
\[\| T_m^* f \|_p \leq \left(\sum_k \| \mathcal{F}^{-1} [m(2^{-kP^\cdot}) f^\wedge] \|^p \right)^{1/p} \]
\[\leq c \left(\sum_k \left(\sum_l |\eta_{k+l} * \mathcal{F}^{-1} [m(2^{-kP^\cdot}) f^\wedge]|^2 \right)^{1/2} \right)^{1/2} \]
\[\leq c \left(\sum_l \left(\sum_k \| \mathcal{F}^{-1} [\phi(2^{-k+l}P^\cdot) m(2^{-kP^\cdot}) \cdot \bar{\eta}_{k+l} * f \|_p]^2 \right)^{2/p} \right)^{1/2} \]
\[\leq c \left(\sum_l \| \phi m(tP^\cdot) \|_{M_p}^2 \right)^{1/2} \left(\sum_k \| \bar{\eta}_k * f \|_p \right)^{1/p}, \]
and a second application of Littlewood-Paley theory implies the assertion.

Corollary 6. Suppose that \(m \in M_p \) satisfies for some \(\delta > 0 \) \(|m(\xi)| \leq c|\xi|^\delta \), if \(|\xi| \leq 1 \) and \(|m(\xi)| \leq c(|\xi|^{-\delta}, \text{ if } |\xi| \geq 1. \)
(i) If \(p > 2 \), then \(\| T_m^* f \|_r \leq c_r \| f \|_r \), \(2 \leq r < p \).
(ii) If \(p < 2 \), and \(\sup_{t>0} \| \phi(tP^\cdot) \|_{M_r} < \infty \), then \(\| T_m^* f \|_r \leq c \| f \|_r \), \(p < r \leq 2 \).

The proof follows by interpolation. Note that (i) is already contained in [4].

Remark. In many cases, the decay condition at the origin is not valid, but \(m \) is smooth near \(\xi = 0 \). Then one may split \(m = m_0 + m_1 \), where \(m_0 \) is compactly supported and smooth and equals \(m \) near the origin. \(T_{m_0}^* f \) is majorized by the Hardy-Littlewood maximal function \(M^* f \), and \(T_{m_1}^* f \) can be handled by the above corollaries. For example we can deduce the following result of Duoandikoetxea and
Rubio de Francia [6] (which, however, does not require the full strength of Theorem 1.1):

Let \(\mu \) be a compactly supported measure satisfying \(\mu^\wedge(\xi) \leq c(1 + |\xi|)^{-\delta} \),

\[
\sup_{k \in \mathbb{Z}} \left| \int f(x - 2^k \xi) \, d\mu(y) \right|_p \leq c\|f\|_p, \quad 1 < p \leq \infty.
\]

Write \(\mu = m + \tilde{m} \), where \(m(\xi) = 0 \) near the origin and \(\text{supp} \tilde{m} \) is compact. Since \(\mu \) is compactly supported, \(m, \tilde{m} \) are smooth; further \(|D^\alpha \mu^\wedge(\xi)| \leq c(1 + |\xi|)^{-\delta} \) for every multi-index \(\alpha \). Then \(|T_m^\wedge f| \leq cMf \). If \(t \geq 1 \) we have

\[
\|\phi m(t^P \cdot)\|_\infty \leq c t^{-\delta a_0}, \quad \|D^\alpha (\phi m(t^P \cdot))\|_\infty \leq c t^{a_0}, \quad |\alpha| = 1
\]

which implies \(\sup_{t>0} \|\phi m(t^P \cdot)\|_{L_\infty} < \varepsilon \), for some \(\varepsilon > 0 \). \(\square \)

3.4. Multipliers on Triebel-Lizorkin spaces. Define for \(1 < p, q < \infty \), \(\eta_q \) as in 2.1,

\[
g_q(f) = \left(\sum_{k = -\infty}^{\infty} |\eta_k \ast f|^q \right)^{1/q}
\]

and the homogeneous Triebel-Lizorkin space \(\dot{F}^{pq} = \dot{F}^{pq}(P) \) by \(\|f\|_{\dot{F}^{pq}} = \|g_q(f)\|_p \). \(\dot{F}^{pq} \) should be considered as a subspace of \(\mathcal{F}^\wedge(\mathbb{R}^n) \) modulo polynomials; the definition depends on the dilation group \((t^P) \).

Let \(\mathcal{M}_{pq} = \mathcal{M}_{pq}(P) \) be the subspace of bounded functions whose norms

\[
\|m\|_{\dot{F}^{pq}} = \sup\{\|\mathcal{F}^{-1}[m^{\wedge}\cdot]\|_{\dot{F}^{pq}} ; f \in \mathcal{Z}_0, \|f\|_{\dot{F}^{pq}} \leq 1\}
\]

are finite. Note that \(\mathcal{Z}_0 \) is dense in \(\dot{F}^{pq} \). Multipliers in \(\dot{F}^{pq} \) are multipliers in the whole scale \(\dot{F}^{pq}_s \), \(-\infty < s < \infty \) (defined in [19] for isotropic dilations) since \(\dot{F}^{pq}_s = I_s \dot{F}^{pq} \), where \(I_s f = \mathcal{F}^{-1}[\rho^{-s} f^\wedge] \) for some \(P \)-homogeneous distance function \(\rho \in C^\infty(\mathbb{R}^n_0) \). For simple properties of \(\mathcal{M}_{pq} \) we refer to Triebel [19, p. 128], where the inhomogeneous case is discussed. Observe that \(\mathcal{M}_p = \mathcal{M}_{pq} \) equals the space of multipliers on anisotropic homogeneous Besov spaces \(B_{pq}^r \) as mentioned in the Introduction.

THEOREM 4. Suppose that \(m \) is a bounded function satisfying for some \(p, 1 < p < \infty, \varepsilon > 0 \)

(i) \(\sup_{t>0} \|\phi m(t^P \cdot)\|_{M_p} \leq A \),

(ii) \(\sup_{t>0} \int_{|x| \geq \omega} |\mathcal{F}^{-1}[\phi m(t^P \cdot)]| \, dx \leq c B(1 + \omega)^{-\varepsilon} \).

Then \(m \) is a Fourier multiplier in \(\dot{F}^{pq}(P) \), \(|1/q - 1/2| \leq |1/p - 1/2| \), and \(\|m\|_{\dot{F}^{pq}} \leq cA[\log(2 + B/A)]^{1/p-1/q} \).

Proof. By duality, we may assume \(p > q \). It suffices to consider the case \(q = p' \); the remaining cases follow by interpolation. The proof is a repetition of the arguments needed for Theorem 1, so we omit the details. The operators \(S, \sigma_1, \sigma_2 \) are defined as in (5), (6), (7) but now with \((\sum |\chi_k(x, y)|^{p'})^{1/p'} \leq 1 \). Then

\[
\|\sigma_1(F)\|_p \leq cN^{1/p'-1/p} \|F\|_{L_p'(1^P)}, \quad \|\sigma_2(H)\|_p \leq c\|A\|_{L_p'(1^P)}.
\]
Instead of Plancherel’s theorem and Littlewood-Paley theory, we use the hypothesis
\[\sup_{t>0} \| \phi m(t^p \cdot) \|_{\mathcal{M}_p} \leq A \text{ and the definition of } \hat{F}^\Phi. \]

As in §1, this theorem implies several corollaries, e.g.

COROLLARY 7. Suppose that for some \(\epsilon > 0 \)
\[\sup_{t>0} \| \phi m(t^p \cdot) \|_{\Lambda_\epsilon} < \infty. \]

If \(m \) is a multiplier on the homogeneous Besov space \(\hat{F}^\Phi(P) \), then it is also a multiplier on \(\hat{F}^r(P) \), \(p < r, s < p' \).

It is an interesting problem whether the hypothesis of Corollary 7 implies \(m \in \mathcal{H}_2(P) \) for some \(|1/s - 1/2| > |1/p - 1/2| \).

During the preparation of this paper the author was informed by A. Carbery, that he also established some of the results of this paper (see [2]), using another approach. In particular he found Corollaries 2 and 6, as well as some weak-type estimates in the endpoint cases.

REFERENCES

FACHBEREICH MATHEMATIK, TECHNISCHE HOCHSCHULE DARMSTADT, 6100 DARMSTADT, FEDERAL REPUBLIC OF GERMANY

Current address: Department of Mathematics, Princeton University, Fine Hall, Princeton, New Jersey 08544