Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some P.V.-equivalences and a classification of $ 2$-simple prehomogeneous vector spaces of type $ {\rm II}$


Authors: Tatsuo Kimura, Shin-ichi Kasai, Masanobu Taguchi and Masaaki Inuzuka
Journal: Trans. Amer. Math. Soc. 308 (1988), 433-494
MSC: Primary 11R20; Secondary 11E99, 11N25, 11R18, 11R29, 32M10
DOI: https://doi.org/10.1090/S0002-9947-1988-0951617-6
MathSciNet review: 951617
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A classification of $ 2$-simple prehomogeneous vector spaces is completed by using some P.V.-equivalences together with [3]. Some part is very different from the previous classification of the irreducible or simple cases [1, 2], and some new method is necessary. This result shows the difficult point of a classification problem of reductive prehomogeneous vector spaces.


References [Enhancements On Off] (What's this?)

  • [1] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155. MR 0430336 (55:3341)
  • [2] T. Kimura, A classification of prehomogeneous vector spaces of simple algebraic groups with scalar multiplications, J. Algebra 83 (1983), 72-100. MR 710588 (85d:32059)
  • [3] T. Kimura, S.-I. Kasai, M. Inuzuka and O. Yasukura, A classification of $ 2$-simple prehomogeneous vector spaces of Type I, J. Algebra (to appear). MR 936979 (89f:32062)
  • [4] T. Kimura, S.-I. Kasai and O. Yasukura, A classification of the representations of reductive algebraic groups which admit only a finite number of orbits, Amer. J. Math. 108 (1986), 643-692. MR 844634 (87k:20074)
  • [5] T. Kimura and S.-I. Kasai, The orbital decomposition of some prehomogeneous vector spaces, Adv. Stud. Pure Math. 6 (1985), 437-480. MR 803343 (87c:22030)
  • [6] Z. Chen, A new prehomogeneous vector space of characteristic $ p$, East China Normal University, preprint. MR 795688 (86h:20059)
  • [7] -, Fonction zeta associée a un espace prehomogène et sommes de Gauss, Publ. de l'Institut de Recherche Math. Avancée (to appear).
  • [8] A. Gyoja and N. Kawanaka, Gauss sums of prehomogeneous vector spaces, Proc. Japan Acad. Sci. Ser. A 61 (1985), 19-22. MR 798028 (86j:11119)
  • [9] A. Gyoja, On irreducible regular prehomogeneous vector space I (in preparation).
  • [10] J.-I. Igusa, A classification of spinors up to dimension twelve, Amer. J. Math. 92 (1970), 997-1028. MR 0277558 (43:3291)
  • [11] -, Some results on $ p$-adic complex powers, Amer. J. Math. 106 (1984), 1013-1032. MR 761577 (86f:11046)
  • [12] -, On functional equations of complex powers, Invent. Math. 85 (1986), 1-29. MR 842045 (87j:11134)
  • [13] -, On a certain class of prehomogeneous vector spaces, 1985, preprint.
  • [14] V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190-213. MR 575790 (81i:17005)
  • [15] N. Kawanaka, Generalized Gelfand-Graev representations of exceptional simple algebraic groups over a finite field. I, Invent. Math. 84 (1986), 575-616. MR 837529 (88a:20058)
  • [16] T. Kimura, The $ b$-functions and holonomy diagrams of irreducible regular prehomogeneous vector spaces, Nagoya Math. J. 85 (1982), 1-80. MR 648417 (84j:32017)
  • [17] I. Muller, H. Rubenthaler and G. Schiffmann, Structure des espaces prehomogènes associés a certaines algèbres de Lie graduées, Math. Ann. 274 (1986), 95-123. MR 834108 (88e:17025)
  • [18] M. Muro, Singular invariant tempered distributions on prehomogeneous vector spaces, 1985, preprint. MR 772499 (87d:11031b)
  • [19] I. Ozeki, On the microlocal structure of the regular prehomogeneous vector space associated with $ SL(5) \times GL(4)$. I, Proc. Japan Acad. Sci. 55 (1979), 37-40. MR 528224 (81k:20057)
  • [20] H. Rubenthaler, Espaces prehomogènes de type parabolique, Publ. de l'Institut de Recherche Math. Avancée.
  • [21] I. Satake and J. Faraut, The functional equation of zeta distributions associated with formally real Jordan algebras, Tôhoku Math. J. 36 (1984), 469-482. MR 756029 (86a:11019)
  • [22] F. Sato, Zeta functions in several variables associated with prehomogeneous vector spaces. III, Ann. of Math. (2) 116 (1982), 177-212. MR 662121 (84e:12015c)
  • [23] M. Sato, M. Kashiwara, T. Kimura and T. Oshima, Micro-local analysis of prehomogeneous vector spaces, Invent. Math. 62 (1980), 117-179. MR 595585 (83g:32016)
  • [24] M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math. (2) 100 (1974), 131-171. MR 0344230 (49:8969)
  • [25] Y. Teranishi, Relative invariants and $ b$-functions of prehomogeneous vector spaces ($ G$, $ GL({d_1}, \ldots ,{d_r})$, $ {\tilde \rho _1}$, $ M(n,\,C)$), Nagoya Math. J. 98 (1985), 139-156. MR 792777 (86j:20039)
  • [26] -, The functional equation of zeta distributions associated with prehomogeneous vector spaces ($ \tilde G$, $ \tilde \rho $, $ M(n,\,C)$), Nagoya Math. J. 99 (1985), 131-146. MR 805085 (87e:22031)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11R20, 11E99, 11N25, 11R18, 11R29, 32M10

Retrieve articles in all journals with MSC: 11R20, 11E99, 11N25, 11R18, 11R29, 32M10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0951617-6
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society