Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Engulfing and subgroup separability for hyperbolic groups


Author: D. D. Long
Journal: Trans. Amer. Math. Soc. 308 (1988), 849-859
MSC: Primary 57M05
DOI: https://doi.org/10.1090/S0002-9947-1988-0951631-0
MathSciNet review: 951631
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If a group is subgroup separable, otherwise known as locally extended residually finite or LERF, one can pass from immersions to embeddings in some finite covering space. We show that a certain 'engulfing' property gives subgroup separability for a large and useful class of subgroups of hyperbolic $ 3$-manifold groups.


References [Enhancements On Off] (What's this?)

  • [1] R. J. B. T. Allenby et al., Frattini subgroups of $ 3$-manifold groups, Trans. Amer. Math. Soc. 247 (1979), 275-299. MR 517695 (80b:57001)
  • [2] F. Bonahon, Bouts des variétés hyperboliques de dimension $ 3$, Ann. of Math. 124 (1986), 71-158. MR 847953 (88c:57013)
  • [3] M. Hall, Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949), 421-432. MR 0032642 (11:322e)
  • [4] J. Hempel, $ 3$-manifolds, Ann. of Math. Studies, no. 86, Princeton Univ. Press, Princeton, N. J., MR 0415619 (54:3702)
  • [5] G. A. Margulis and G. A. Soifer, Maximal subgroups of infinite index in finitely generated linear groups, J. Algebra 69 (1981), 1-23. MR 613853 (83a:20056)
  • [6] G. P. Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. 17 (1978), 555-565; Correction, J. London Math. Soc. 32 (1985), 217-220. MR 0494062 (58:12996)
  • [7] H. Bass and J. Morgan, The Smith conjecture, Proc. 1979 Conf., Academic Press, New York, MR 758459 (86i:57002)
  • [8] W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381. MR 648524 (83h:57019)
  • [9] -, The geometry and topology of $ 3$-manifolds, Lecture Notes, Princeton, N. J.
  • [10] D. D. Long, Immersions and embeddings of totally geodesic surfaces, Bull. London Math. Soc. 19 (1987), 481-484. MR 898729 (89g:57014)
  • [11] A. Lubotzky, Group presentation, $ p$-adic analytic groups and lattices in $ S{L_2}({\mathbf{C}})$, Ann. of Math. 118 (1983), 115-130. MR 707163 (85i:22017)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M05

Retrieve articles in all journals with MSC: 57M05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0951631-0
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society