Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Trace Paley-Wiener theorem in the twisted case


Author: J. D. Rogawski
Journal: Trans. Amer. Math. Soc. 309 (1988), 215-229
MSC: Primary 22E50
DOI: https://doi.org/10.1090/S0002-9947-1988-0957068-2
MathSciNet review: 957068
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A version of the trace Paley-Wiener theorem for a reductive $ p$-adic group in the context of twisted harmonic analysis with respect to an outer automorphism is proved.


References [Enhancements On Off] (What's this?)

  • [1] J. Arthur and L. Clozel, Base change for $ \operatorname{GL} (n)$, preprint.
  • [2] J. Bernstein and P. Deligne, Le "centre" de Bernstein, Représentations des Groupes Reductifs sur un Corps Local, Hermann, Paris, 1985. MR 771671 (86e:22028)
  • [3] J. Bernstein, P. Deligne and D. Kazhdan, Trace Paley- Wiener theorem for reductive $ p$-adic groups, J. Analyse 47 (1986), 180-192. MR 874050 (88g:22016)
  • [4] J. Bernstein and A. Zelevinsky, Induced representations of reductive $ p$-adic groups, Ann. Sci. Ecole Norm. Sup. (4) 10 (1977), 441-472. MR 0579172 (58:28310)
  • [5] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Ann. of Math. Studies, no. 94, Princeton Univ. Press, Princeton, N. J., 1980. MR 554917 (83c:22018)
  • [6] W. Casselman, Characters and Jacquet modules, Math. Ann. 230 (1977), 101-105. MR 0492083 (58:11237)
  • [7] L. Clozel, Characters of non-connected reductive $ p$-adic groups, preprint.
  • [8] -, Sur une conjecture de Howe. I, Compositio Math. 56 (1985), 87-110. MR 806844 (87e:22023)
  • [9] Seminar on the trace formula, Institute for Advanced Study, Princeton, N. J., 1984.
  • [10] J. Rogawski, Automorphic representations of unitary group in three variables, preprint. MR 1081540 (91k:22037)
  • [11] -, Representations of $ \operatorname{GL} (n)$ and division algebras over a $ p$-adic field, Duke Math. J. 50 (1983), 161-196. MR 700135 (84j:12018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E50

Retrieve articles in all journals with MSC: 22E50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0957068-2
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society