Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

A Diophantine problem on elliptic curves


Author: Robert Tubbs
Journal: Trans. Amer. Math. Soc. 309 (1988), 325-338
MSC: Primary 11J85
MathSciNet review: 957074
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper examines simultaneous diophantine approximations to coordinates of certain points on a product of elliptic curves. Specifically, let $ \wp (z)$ be a Weierstrass elliptic function with algebraic invariants and complex multiplication. Suppose that $ \beta $ is cubic over the "field of multiplications" of $ \wp (z)$ and that $ u \in \mathbb{C}$ such that $ \zeta = (\wp (u),\,\wp (\beta u),\,\wp ({\beta ^2}u))$ is defined. We study approximations to $ \zeta $ by points which lie on curves defined over $ \mathbb{Z}$.


References [Enhancements On Off] (What's this?)

  • [1] D. Bertrand, Problèmes locaux, Appendice I, Nombres Transcendants et Groupes Algébriques, Asterisque, pp. 69-70, M. Waldschmidt.
  • [2] Alex Bijlsma, An elliptic analogue of the Franklin-Schneider theorem, Ann. Fac. Sci. Toulouse Math. (5) 2 (1980), no. 2, 101–116 (English, with French summary). MR 595193
  • [3] W. Dale Brownawell, On the Gel′fond-Fel′dman measure of algebraic independence, Compositio Math. 38 (1979), no. 3, 355–368. MR 535077
  • [4] W. D. Brownawell, Some remarks on semi-resultants, Transcendence theory: advances and applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976) Academic Press, London, 1977, pp. 205–210. MR 0480370
  • [5] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. MR 0087708
  • [6] A. O. Gel′fond, Transcendental and algebraic numbers, Translated from the first Russian edition by Leo F. Boron, Dover Publications, Inc., New York, 1960. MR 0111736
  • [7] A. O. Gel′fond and N. I. Fel′dman, On the measure of relative transcendentality of certain numbers, Izvestiya Akad. Nauk SSSR. Ser. Mat. 14 (1950), 493–500 (Russian). MR 0040349
  • [8] David William Masser, Transcendence and abelian functions, Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974) Soc. Math. France, Paris, 1975, pp. 177–182. Astérisque, Nos. 24-25. MR 0371828
  • [9] D. W. Masser and G. Wüstholz, Zero estimates on group varieties. II, Invent. Math. 80 (1985), no. 2, 233–267. MR 788409, 10.1007/BF01388605
  • [10] Patrice Philippon, Lemmes de zéros dans les groupes algébriques commutatifs, Bull. Soc. Math. France 114 (1986), no. 3, 355–383 (French, with English summary). MR 878242
  • [11] Robert Tubbs, On the measure of algebraic independence of certain values of elliptic functions, J. Number Theory 23 (1986), no. 1, 60–79. MR 840016, 10.1016/0022-314X(86)90004-1

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11J85

Retrieve articles in all journals with MSC: 11J85


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0957074-8
Article copyright: © Copyright 1988 American Mathematical Society