Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Boundary behavior of invariant Green's potentials on the unit ball in $ {\bf C}\sp n$

Authors: K. T. Hahn and David Singman
Journal: Trans. Amer. Math. Soc. 309 (1988), 339-354
MSC: Primary 32A40; Secondary 31B25
MathSciNet review: 957075
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ p(z) = \int_B {G(z,\,w)\,d\mu (w)} $ be an invariant Green's potential on the unit ball $ B$ in $ {{\mathbf{C}}^n}\;(n \geqslant 1)$, where $ G$ is the invariant Green's function and $ \mu $ is a positive measure with $ \int_B {{{(1 - \vert w{\vert^2})}^n}\,d\mu (w) < \infty } $.

In this paper, a necessary and sufficient condition on a subset $ E$ of $ B$ such that for every invariant Green's potential $ p$,

$\displaystyle \mathop {\lim }\limits_{z \to e} \,\inf {(1 - \vert z{\vert^2})^n}p(z) = 0,\qquad e = (1,\,0,\, \ldots ,\,0)\; \in \partial B,\;z \in E,$

is given. The condition is that the capacity of the sets $ E \cap \{ z \in B\vert\;\vert z - e\vert < \varepsilon \} $, $ \varepsilon > 0$, is bounded away from 0. The result obtained here generalizes Luecking's result, see [L], on the unit disc in $ {\mathbf{C}}$.

References [Enhancements On Off] (What's this?)

  • [B] M. Brelot, Lectures on potential theory, Tata Institute No. 19, Bombay, 1960, reissued 1967. MR 0259146 (41:3788)
  • [D] J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren Math. Wiss., vol. 262, Springer-Verlag, New York, 1984. MR 731258 (85k:31001)
  • [HM] K. T. Hahn and J. Mitchell, Green's function on the classical Cartan domains, MRC Tech. Summary Report No. 800, Univ. of Wisconsin, Dec. 1967, 24 pp.
  • [HS] K. T. Hahn and M. Stoll, Boundary limits of Greens potentials on the ball in $ {{\mathbf{C}}^n}$, Complex Variables 9 (1988), 359-371. MR 936479 (89f:31005)
  • [H] R. M. Hervé, Recherches axiomatiques sur la théorie des fonctions subharmoniques et du potential, Ann. Inst. Fourier (Grenoble) 12 (1962), 415-571. MR 0139756 (25:3186)
  • [K] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Appl. Math., vol. 2, Dekker, New York, 1970. MR 0277770 (43:3503)
  • [L] D. H. Luecking, Boundary behavior of Green potentials, Proc. Amer. Math. Soc. 296 (1986), 481-488. MR 822445 (87g:31002)
  • [R] W. Rudin, Function theory in the unit ball of $ {{\mathbf{C}}^n}$, Grundlehren Math. Wiss., vol. 241, Springer-Verlag, New York, 1980. MR 601594 (82i:32002)
  • [S] I. S. Sokolnikoff, Tensor analysis, Wiley, New York, 1964.
  • [St] E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Math. Notes, Princeton Univ. Press, Princeton, N. J., 1972. MR 0473215 (57:12890)
  • [U] D. Ullrich, Radial limits of $ M$-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), 501-518. MR 808734 (87a:31007)
  • [UT] -, Moebius-invariant potential theory in the unit ball of $ {{\mathbf{C}}^n}$, Thesis, Univ. of Wisconsin, Madison, 1981; University Microfilms International, Ann Arbor, Michigan, 1984.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32A40, 31B25

Retrieve articles in all journals with MSC: 32A40, 31B25

Additional Information

Keywords: Invariant Green's potential, boundary behavior, Bergman metric, Laplace-Beltrami operator, harmonic, superharmonic, capacity, energy, Brelot space
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society