-periodic over the Steenrod algebra

Authors:
Donald M. Davis and Mark Mahowald

Journal:
Trans. Amer. Math. Soc. **309** (1988), 503-516

MSC:
Primary 55T15; Secondary 55Q45, 55S10

DOI:
https://doi.org/10.1090/S0002-9947-1988-0931531-2

MathSciNet review:
931531

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a large family of modules over the Steenrod algebra , is periodic for with respect to operators of period for varying . can be defined by extending this periodic behavior outside this range. We calculate this completely when , where is the suspension spectrum of .

**[A]**J. F. Adams,*A periodicity theorem in homological algebra*, Proc. Cambridge Philos. Soc.**62**(1966), 365–377. MR**0194486****[ABP]**D. W. Anderson, E. H. Brown Jr., and F. P. Peterson,*The structure of the Spin cobordism ring*, Ann. of Math. (2)**86**(1967), 271–298. MR**0219077**, https://doi.org/10.2307/1970690**[AD]**Donald W. Anderson and Donald M. Davis,*A vanishing theorem in homological algebra*, Comment. Math. Helv.**48**(1973), 318–327. MR**0334207**, https://doi.org/10.1007/BF02566125**[D]**Donald M. Davis,*The 𝑏𝑜-Adams spectral sequence: some calculations and a proof of its vanishing line*, Algebraic topology (Seattle, Wash., 1985) Lecture Notes in Math., vol. 1286, Springer, Berlin, 1987, pp. 267–285. MR**922930**, https://doi.org/10.1007/BFb0078745**[DM1]**Donald M. Davis and Mark Mahowald,*𝑣₁- and 𝑣₂-periodicity in stable homotopy theory*, Amer. J. Math.**103**(1981), no. 4, 615–659. MR**623131**, https://doi.org/10.2307/2374044**[DM2]**-,*Ext over the subalgebra**of the Steenrod algebra for stunted projective spaces*, Current Trends in Algebraic Topology, Canadian Math. Soc. Conf. Proc., vol. 2, Part 1, Amer. Math. Soc., Providence, R. I., 1982, pp. 297-343.**[DM3]**Donald M. Davis and Mark Mahowald,*Homotopy groups of some mapping telescopes*, Algebraic topology and algebraic 𝐾-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 126–151. MR**921475****[L]**W. Lellman,*The*-*term of the Adams spectral sequence based on connective Morava*-*theory*, preprint (1983).**[M1]**Mark Mahowald,*The order of the image of the 𝐽-homomorphism*, Proc. Advanced Study Inst. on Algebraic Topology (Aarhus, 1970) Mat. Inst., Aarhus Univ., Aarhus, 1970, pp. 376–384. MR**0276962****[M2]**Mark Mahowald,*The image of 𝐽 in the 𝐸𝐻𝑃 sequence*, Ann. of Math. (2)**116**(1982), no. 1, 65–112. MR**662118**, https://doi.org/10.2307/2007048**[MS]**Mark Mahowald and Paul Shick,*Periodic phenomena in the classical Adams spectral sequence*, Trans. Amer. Math. Soc.**300**(1987), no. 1, 191–206. MR**871672**, https://doi.org/10.1090/S0002-9947-1987-0871672-0**[Mac]**Saunders Mac Lane,*Homology*, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR**1344215****[Mi]**Haynes R. Miller,*A localization theorem in homological algebra*, Math. Proc. Cambridge Philos. Soc.**84**(1978), no. 1, 73–84. MR**0494105**, https://doi.org/10.1017/S0305004100054906**[R]**Douglas C. Ravenel,*Complex cobordism and stable homotopy groups of spheres*, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR**860042**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
55T15,
55Q45,
55S10

Retrieve articles in all journals with MSC: 55T15, 55Q45, 55S10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1988-0931531-2

Keywords:
Cohomology of Steenrod algebra,
-periodicity,
spectral sequences

Article copyright:
© Copyright 1988
American Mathematical Society