Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Trace identities and $ \bf {Z}/2\bf {Z}$-graded invariants


Author: Allan Berele
Journal: Trans. Amer. Math. Soc. 309 (1988), 581-589
MSC: Primary 17B70; Secondary 15A24, 15A69, 22E60
DOI: https://doi.org/10.1090/S0002-9947-1988-0938917-0
MathSciNet review: 938917
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove Razmyslov's theorem on trace identities for $ {M_{k,\,l}}$ using the invariant theory of $ \operatorname{pl} (k,\,l)$.


References [Enhancements On Off] (What's this?)

  • [1] I. Bars, Supergroups and superalgebras in physics, Physics D 15 (1985), 42-64. MR 784619 (86f:22024)
  • [2] A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and to the representation of Lie superalgebras, Adv. in Math. 64 (1987), 118-175. MR 884183 (88i:20006)
  • [3] A. R. Kemer, Varieties and $ {Z_2}$-graded algebras, Math. USSR Izv. 25 (1985), 359-374.
  • [4] D. Krakowski and A. Regev, The polynomial identities of the Grassmann algebra, Trans. Amer. Math. Soc. 181 (1973), 429-438. MR 0325658 (48:4005)
  • [5] C. Procesi, The invariant theory of $ n \times n$ matrices, Adv. in Math. 19 (1976), 306-381. MR 0419491 (54:7512)
  • [6] Yu. P. Razmyslov, Trace identities of full matrix algebra over a field of characteristic zero, Algebra i Logika 12 (1973), 47-63.
  • [7] -, Identities with a trace and central polynomials in matrix superalgebras $ {M_{n,k}}$, Mat. Sb. 128 (1985), 194-215. MR 809485 (87f:16014)
  • [8] A. Regev, Sign trace identities, preprint. MR 897942 (88f:15046)
  • [9] T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, Reading, Mass., 1973. MR 0396410 (53:277)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B70, 15A24, 15A69, 22E60

Retrieve articles in all journals with MSC: 17B70, 15A24, 15A69, 22E60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0938917-0
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society