Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Definable sets in ordered structures. III


Authors: Anand Pillay and Charles Steinhorn
Journal: Trans. Amer. Math. Soc. 309 (1988), 469-476
MSC: Primary 03C45; Secondary 03C40, 03C50, 06F99
DOI: https://doi.org/10.1090/S0002-9947-1988-0943306-9
MathSciNet review: 943306
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that any $ o$-minimal structure has a strongly $ o$-minimal theory.


References [Enhancements On Off] (What's this?)

  • [1] J. Knight, A. Pillay and C. Steinhorn, Definable sets in ordered structures. II, Trans. Amer. Math. Soc. 295 (1986), 593-605. MR 833698 (88b:03050b)
  • [2] A. Pillay and C. Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), 565-592. MR 833697 (88b:03050a)
  • [3] A. Pillay and C. Steinhorn, Discrete $ o$-minimal structures, Ann. Pure Appl. Logic 34 (1987), 275-290. MR 899083 (88j:03023)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03C45, 03C40, 03C50, 06F99

Retrieve articles in all journals with MSC: 03C45, 03C40, 03C50, 06F99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0943306-9
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society