Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Locally bounded sets of holomorphic mappings


Authors: José Bonet, Pablo Galindo, Domingo García and Manuel Maestre
Journal: Trans. Amer. Math. Soc. 309 (1988), 609-620
MSC: Primary 46G20; Secondary 46A05, 46E10
MathSciNet review: 961603
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Several results and examples about locally bounded sets of holomorphic mappings defined on certain classes of locally convex spaces (Baire spaces, $ (DF)$-spaces, $ C(X)$-spaces) are presented. Their relation with the classification of locally convex spaces according to holomorphic analogues of barrelled and bornological properties of the linear theory is considered.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Ansemil and S. Ponte, Topologies associated with the compact open topology on \cal𝐻(𝑈), Proc. Roy. Irish Acad. Sect. A 82 (1982), no. 1, 121–128. MR 669471
  • [2] Jorge Aragona, On the holomorphical classification of spaces of holomorphic germs, Nagoya Math. J. 84 (1981), 85–118. MR 641148
  • [3] J. Arias de Reyna, Normed barely Baire spaces, Israel J. Math. 42 (1982), no. 1-2, 33–36. MR 687932, 10.1007/BF02765008
  • [4] Jorge Alberto Barroso, Mário C. Matos, and Leopoldo Nachbin, On bounded sets of holomorphic mappings, Proceedings on Infinite Dimensional Holomorphy (Internat. Conf., Univ. Kentucky, Lexington, Ky., 1973) Springer, Berlin, 1974, pp. 123–134. Lecture Notes in Math., Vol. 364. MR 0394200
  • [5] Jorge Alberto Barroso, Mário C. Matos, and Leopoldo Nachbin, On holomorphy versus linearity in classifying locally convex spaces, Infinite dimensional holomorphy and applications (Proc. Internat. Sympos., Univ. Estadual de Campinas, São Paulo, 1975) North-Holland, Amsterdam, 1977, pp. 31–74. North-Holland Math. Studies, Vol. 12, Notas de Mat., No. 54. MR 0473817
  • [6] Jacek Bochnak and Józef Siciak, Analytic functions in topological vector spaces, Studia Math. 39 (1971), 77–112. MR 0313811
  • [7] José Bonet, The countable neighbourhood property and tensor products, Proc. Edinburgh Math. Soc. (2) 28 (1985), no. 2, 207–215. MR 806751, 10.1017/S0013091500022641
  • [8] Soo Bong Chae, Holomorphy and calculus in normed spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 92, Marcel Dekker, Inc., New York, 1985. With an appendix by Angus E. Taylor. MR 788158
  • [9] Jean-François Colombeau and Jorge Mujica, Existence of holomorphic mappings with prescribed asymptotic expansions at a given set of points in infinite dimensions, Nonlinear Anal. 5 (1981), no. 2, 149–156. MR 606696, 10.1016/0362-546X(81)90040-7
  • [10] M. De Wilde and J. Schmets, Caractérisation des espaces 𝐶(𝑋) ultrabornologiques, Bull. Soc. Roy. Sci. Liège 40 (1971), 119–121 (French, with English summary). MR 0291781
  • [11] Seán Dineen, Holomorphic functions on locally convex topological vector spaces. I. Locally convex topologies on \cal𝐻(𝑈), Ann. Inst. Fourier (Grenoble) 23 (1973), no. 1, 19–54 (English, with French summary). MR 0500153
  • [12] Seán Dineen, Holomorphic functions on locally convex topological vector spaces. II. Pseudo convex domains, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 155–185 (English, with French summary). MR 0508057
  • [13] Seán Dineen, Surjective limits of locally convex spaces and their application to infinite dimensional holomorphy, Bull. Soc. Math. France 103 (1975), no. 4, 441–509. MR 0423075
  • [14] Seán Dineen, Holomorphic functions on strong duals of Fréchet-Montel spaces, Infinite dimensional holomorphy and applications (Proc. Internat. Sympos., Univ. Estadual de Campinas, S ao Paulo, 1975) North-Holland, Amsterdam, 1977, pp. 147–166. North-Holland Math. Studies, Vol. 12, Notas de Mat., No. 54. MR 0493332
  • [15] Seán Dineen, Complex analysis in locally convex spaces, North-Holland Mathematics Studies, vol. 57, North-Holland Publishing Co., Amsterdam-New York, 1981. Notas de Matemática [Mathematical Notes], 83. MR 640093
  • [16] Seán Dineen, Holomorphic functions on inductive limits of 𝐶^{𝑁}, Proc. Roy. Irish Acad. Sect. A 86 (1986), no. 2, 143–146. MR 898186
  • [17] Ryszard Engelking, General topology, PWN—Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author; Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60]. MR 0500780
  • [18] Klaus Floret, Some aspects of the theory of locally convex inductive limits, Functional analysis: surveys and recent results, II (Proc. Second Conf. Functional Anal., Univ. Paderborn, Paderborn, 1979) North-Holland Math. Stud., vol. 38, North-Holland, Amsterdam-New York, 1980, pp. 205–237. MR 565407
  • [19] Pablo Galindo, Domingo García, and Manuel Maestre, Holomorphically ultrabornological spaces and holomorphic inductive limits, J. Math. Anal. Appl. 124 (1987), no. 1, 15–26. MR 883509, 10.1016/0022-247X(87)90020-5
  • [20] Alexandre Grothendieck, Sur les espaces (𝐹) et (𝐷𝐹), Summa Brasil. Math. 3 (1954), 57–123 (French). MR 0075542
  • [21] Hans Jarchow, Locally convex spaces, B. G. Teubner, Stuttgart, 1981. Mathematische Leitfäden. [Mathematical Textbooks]. MR 632257
  • [22] G. Köthe, Topological vector spaces, I, II, Springer-Verlag, 1969 and 1979.
  • [23] Manuel Maestre, Products of holomorphically relevant spaces, Portugal. Math. 44 (1987), no. 4, 341–353. MR 952784
  • [24] M. C. Matos, Holomorphic mappings and domains of holomorphy, Monografiás do Centro Brasil. de Pesquisas Fisicas, 27, Cent. Brasil. Pesquisas Fisicas, Rio de Janeiro, 1970.
  • [25] Mário C. Matos, Holomorphically bornological spaces and infinite-dimensional versions of Hartogs’ theorem, J. London Math. Soc. (2) 17 (1978), no. 2, 363–368. MR 0477774
  • [26] Luiza A. Moraes, Holomorphic functions on strict inductive limits, Resultate Math. 4 (1981), no. 2, 201–212. MR 636486
  • [27] Luiza Amália Moraes, Holomorphic functions on holomorphic inductive limits and on the strong duals of strict inductive limits, Functional analysis, holomorphy and approximation theory, II (Rio de Janeiro, 1981) North-Holland Math. Stud., vol. 86, North-Holland, Amsterdam, 1984, pp. 297–310. MR 771332, 10.1016/S0304-0208(08)70832-6
  • [28] Leopoldo Nachbin, Topological vector spaces of continuous functions, Proc. Nat. Acad. Sci. U. S. A. 40 (1954), 471–474. MR 0063647
  • [29] -, Topology on spaces of holomorphic mappings, Ergeb. Math. Grenzgeb., 47, Springer-Verlag, 1969.
  • [30] Leopoldo Nachbin, A glimpse at infinite dimensional holomorphy, Proceedings on Infinite Dimensional Holomorphy (Internat. Conf., Univ. Kentucky, Lexington, Ky., 1973) Springer, Berlin, 1974, pp. 69–79. Lecture Notes in Math., Vol. 364. MR 0394204
  • [31] Leopoldo Nachbin, Some holomorphically significant properties of locally convex spaces, Functional analysis (Proc. Brazilian Math. Soc. Sympos., Inst. Mat. Univ. Estad. Campinas, S ao Paulo, 1974) Dekker, New York, 1976, pp. 251–277. Lecture Notes in Pure and Appl. Math., 18. MR 0632068
  • [32] P. Noverraz, Pseudo-convexité, convexité polinomial et domains d'holomorphie en dimension infinie, North-Holland Math. Studies, vol. 3, North-Holland, 1973.
  • [33] Pedro Pérez Carreras and José Bonet, Barrelled locally convex spaces, North-Holland Mathematics Studies, vol. 131, North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 113. MR 880207
  • [34] Dinamérico P. Pombo Jr., On polynomial classification of locally convex spaces, Studia Math. 78 (1984), no. 1, 39–57. MR 766704
  • [35] Taira Shirota, On locally convex vector spaces of continuous functions, Proc. Japan Acad. 30 (1954), 294–298. MR 0064389
  • [36] Roberto Luiz Soraggi, Holomorphic germs on certain locally convex spaces, Ann. Mat. Pura Appl. (4) 144 (1986), 1–22. MR 870866, 10.1007/BF01760808
  • [37] Manuel Valdivia, On nonbornological barrelled spaces, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 2, 27–30 (English, with French summary). MR 0336274
  • [38] Manuel Valdivia, Topics in locally convex spaces, North-Holland Mathematics Studies, vol. 67, North-Holland Publishing Co., Amsterdam-New York, 1982. Notas de Matemática [Mathematical Notes], 85. MR 671092
  • [39] M. Valdivia, Products of Baire topological vector spaces, Fund. Math. 125 (1985), no. 1, 71–80. MR 813990
  • [40] Seth Warner, The topology of compact convergence on continuous function spaces, Duke Math. J. 25 (1958), 265–282. MR 0102735

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46G20, 46A05, 46E10

Retrieve articles in all journals with MSC: 46G20, 46A05, 46E10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0961603-8
Article copyright: © Copyright 1988 American Mathematical Society