A Stone-type representation theorem for algebras of relations of higher rank

Authors:
H. Andréka and R. J. Thompson

Journal:
Trans. Amer. Math. Soc. **309** (1988), 671-682

MSC:
Primary 03G15; Secondary 03C95, 03G25

DOI:
https://doi.org/10.1090/S0002-9947-1988-0961607-5

MathSciNet review:
961607

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Stone representation theorem for Boolean algebras gives us a finite set of equations axiomatizing the class of Boolean set algebras. Boolean set algebras can be considered to be algebras of unary relations. As a contrast here we investigate algebras of -ary relations (originating with Tarski). The new algebras have more operations since there are more natural set theoretic operations on -ary relations than on unary ones. E.g. the identity relation appears as a new constant. The Resek-Thompson theorem we prove here gives a finite set of equations axiomatizing the class of algebras of -ary relations (for every ordinal ).

**[H]**Andréka,*A combinatorial proof for the famous Resek-Thompson theorem for cylindric algebras*, Math. Inst. Hungar. Acad. Sci., Preprint, November 1986, 8 pp.**[W]**William Craig,*Logic in algebraic form*, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. Three languages and theories; Studies in Logic and the Foundations of Mathematics, Vol. 72. MR**0411962****1.**William Craig,*Unification and abstraction in algebraic logic*, Studies in algebraic logic, Math. Assoc. Amer., Washington, D.C., 1974, pp. 6–57. Studies in Math., Vol. 9. MR**0376345****[M]**M. Ferenczi,*On the connection of cylindrical homomorphisms and point functions for 𝐶𝑟𝑠_{𝛼}’s*, Lectures in universal algebra (Szeged, 1983) Colloq. Math. Soc. János Bolyai, vol. 43, North-Holland, Amsterdam, 1986, pp. 123–141. MR**860260****[L]**Leon Henkin,*Relativization with respect to formulas and its use in proofs of independence*, Compositio Math.**20**(1968), 88–106 (1968). MR**0234812****[L]**Leon Henkin and J. Donald Monk,*Cylindric algebras and related structures*, Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol. XXV, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1974, pp. 105–121. MR**0376346****[HMTI]**Leon Henkin, J. Donald Monk, and Alfred Tarski,*Cylindric algebras. Part I*, Studies in Logic and the Foundations of Mathematics, vol. 64, North-Holland Publishing Co., Amsterdam, 1985. With an introductory chapter: General theory of algebras; Reprint of the 1971 original. MR**781929****[HMTII]**Leon Henkin, J. Donald Monk, and Alfred Tarski,*Cylindric algebras. Part II*, Studies in Logic and the Foundations of Mathematics, vol. 115, North-Holland Publishing Co., Amsterdam, 1985. MR**781930****[HMTAN]**Leon Henkin, J. Donald Monk, Alfred Tarski, Hajnal Andréka, and István Németi,*Cylindric set algebras*, Lecture Notes in Mathematics, vol. 883, Springer-Verlag, Berlin-New York, 1981. MR**639151****[L]**Leon Henkin and Diane Resek,*Relativization of cylindric algebras*, Fund. Math.**82**(1974/75), 363–383. Collection of articles dedicated to Andrzej Mostowski on his sixtieth birthday, VIII. MR**0366659**, https://doi.org/10.4064/fm-82-4-363-383**[B]**Bjarni Jónsson,*Defining relations for full semigroups of finite transformations*, Michigan Math. J.**9**(1962), 77–85. MR**0133390****[B]**Bjarni Jónsson and Alfred Tarski,*Boolean algebras with operators. I*, Amer. J. Math.**73**(1951), 891–939. MR**0044502**, https://doi.org/10.2307/2372123**[R]**Maddux,*Topics in relation algebras*, Doctoral Dissertation, Berkeley, Calif., 1978.**2.**Roger Maddux,*Some varieties containing relation algebras*, Trans. Amer. Math. Soc.**272**(1982), no. 2, 501–526. MR**662049**, https://doi.org/10.1090/S0002-9947-1982-0662049-7**[I]**Németi,*Connections between cylindric algebras and initial algebra semantics of**languages*, Mathematical Logic in Computer Science (Proc. Colloq. Salgótarján 1978), Colloq. Math. Soc. J. Bolyai, vol. 26, North-Holland, 1981, pp. 561-605.**3.**I. Németi,*Cylindric-relativised set algebras have strong amalgamation*, J. Symbolic Logic**50**(1985), no. 3, 689–700. MR**805678**, https://doi.org/10.2307/2274323**4.**-,*Free algebras and decidability in algebraic logic*, Doctoral Dissertation (B) for D.Sc (or Dr. Rer. Nat.), Hungar. Acad, of Sci., Budapest, 1986.**[C]**Charles Pinter,*Cylindric algebras and algebras of substitutions*, Trans. Amer. Math. Soc.**175**(1973), 167–179. MR**0317931**, https://doi.org/10.1090/S0002-9947-1973-0317931-1**[D]**Resek,*Some results on relativized cylindric algebras*, Doctoral Dissertation, Berkeley, Calif., 1975.**[R]**J. Thompson,*Transformational structure of algebraic logics*, Doctoral Dissertation, Berkeley, Calif., 1979.**5.**-,*Defining relations for the semigroup of finite non-permutational transformations*, Manuscript, Math. Inst. Hungar. Acad. Sci., Budapest, 1986, pp. 1-18.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
03G15,
03C95,
03G25

Retrieve articles in all journals with MSC: 03G15, 03C95, 03G25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1988-0961607-5

Article copyright:
© Copyright 1988
American Mathematical Society