Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Extremal analytic discs with prescribed boundary data


Authors: Chin-Huei Chang, M. C. Hu and Hsuan-Pei Lee
Journal: Trans. Amer. Math. Soc. 310 (1988), 355-369
MSC: Primary 32H15; Secondary 32D15, 32H20
DOI: https://doi.org/10.1090/S0002-9947-1988-0930081-7
MathSciNet review: 930081
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper concerns the existence and uniqueness of extremal analytic discs with prescribed boundary data in a bounded strictly linearly convex domain $ D$ in $ {{\mathbf{C}}^n}$. We prove that for any two distinct points $ p$, $ q$ in $ \partial D$ (respectively, $ p \in \partial D$ and a vector $ v$ such that $ \sqrt { - 1} v \in {T_p}(\partial D)$ and $ \langle v,\,\overline \nu (p)\rangle = \sum\nolimits_1^n {{v_j}{{\overline \nu }_j}(p) > 0} $ where $ \nu (p)$ is the outward normal to $ \partial D$ at $ p$) there exists an extremal analytic disc $ f$ passing through $ p$, $ q$ if $ \partial D \in {C^k}$, $ k \geqslant 3$ (respectively, $ f(1) = p$, $ f' (1) = v$ if $ \partial D \in {C^k}$, $ k \geqslant 14$). Consequently, we can foliate $ \overline D $ with these extremal analytic discs.


References [Enhancements On Off] (What's this?)

  • [1] C. H. Chang, H. P. Lee and A. N. Wang, Extremal analytic discs and the chains, Chinese J. Math. 13 (1985), 239-255. MR 823338 (87d:32031)
  • [2] J. E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529-569. MR 0422683 (54:10669)
  • [3] J. Globevnik and E. L. Stout, The ends of discs, Bull. Soc. Math. France 114 (1986), 175-195. MR 860815 (88c:32007)
  • [4] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monographs, vol. 26, Amer. Math. Soc., Providence, R.I. 1969; reprinted 1983. MR 0247039 (40:308)
  • [5] H. Jacobowitz, Chains in $ CR$ geometry, J. Differential Geometry 21 (1985), 163-194. MR 816668 (87f:32046)
  • [6] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474. MR 660145 (84d:32036)
  • [7] -, Intrinsic distances and holomorphic retracts, Complex Analysis and Applications, 1981, Bulgar. Acad. Sci., Sofia, 1984, pp. 341-364. MR 883254 (87m:32051)
  • [8] E. A. Poletskii, The Euler-Lagrange equations for extremal holomorphic mappings of the unit disc, Michigan Math. J. 30 (1983), 317-333. MR 725784 (85b:32038)
  • [9] M. Suzuki, Complex geodesics on convex domains, Math. Rep. Toyama Univ. 9 (1986), 137-147. MR 864805 (87m:32052)
  • [10] A. G. Vitushkin, Global normalization of a real analytic surface along a chain, Soviet Math. Dokl. 27 (1983), 270-273. MR 699345 (85d:32040)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32H15, 32D15, 32H20

Retrieve articles in all journals with MSC: 32H15, 32D15, 32H20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0930081-7
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society