The cohomology of presheaves of algebras. I. Presheaves over a partially ordered set

Authors:
Murray Gerstenhaber and Samuel D. Schack

Journal:
Trans. Amer. Math. Soc. **310** (1988), 135-165

MSC:
Primary 16A58; Secondary 16A61, 18E25, 55N25, 55U10

DOI:
https://doi.org/10.1090/S0002-9947-1988-0965749-X

MathSciNet review:
965749

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: To each presheaf (over a poset) of associative algebras we associate an algebra . We define a full exact embedding of the category of (presheaf) -bimodules in that of -bimodules. We show that this embedding preserves neither enough (relative) injectives nor enough (relative) projectives, but nonetheless preserves (relative) Yoneda cohomology. The cohomology isomorphism links the deformations of manifolds, algebraic presheaves, and algebras. It also implies that the cohomology of any triangulable space is isomorphic to the Hochschild cohomology of an associative algebra. (The latter isomorphism preserves all known cohomology operations.) We conclude the paper by exhibiting for each associative algebra and triangulable space a "product" which is again an associative algebra.

**[CE]**Henri Cartan and Samuel Eilenberg,*Homological algebra*, Princeton University Press, Princeton, N. J., 1956. MR**0077480****[G1]**Murray Gerstenhaber,*The cohomology structure of an associative ring*, Ann. of Math. (2)**78**(1963), 267–288. MR**0161898**, https://doi.org/10.2307/1970343**[G2]**Murray Gerstenhaber,*On the deformation of rings and algebras*, Ann. of Math. (2)**79**(1964), 59–103. MR**0171807**, https://doi.org/10.2307/1970484**[GS1]**M. Gerstenhaber and S. D. Schack,*On the deformation of algebra morphisms and diagrams*, Trans. Amer. Math. Soc.**279**(1983), no. 1, 1–50. MR**704600**, https://doi.org/10.1090/S0002-9947-1983-0704600-5**[GS2]**Murray Gerstenhaber and Samuel D. Schack,*Simplicial cohomology is Hochschild cohomology*, J. Pure Appl. Algebra**30**(1983), no. 2, 143–156. MR**722369**, https://doi.org/10.1016/0022-4049(83)90051-8**[GS3]**Murray Gerstenhaber and Samuel D. Schack,*On the cohomology of an algebra morphism*, J. Algebra**95**(1985), no. 1, 245–262. MR**797666**, https://doi.org/10.1016/0021-8693(85)90104-8**[GS4]**Murray Gerstenhaber and Samuel D. Schack,*Relative Hochschild cohomology, rigid algebras, and the Bockstein*, J. Pure Appl. Algebra**43**(1986), no. 1, 53–74. MR**862872**, https://doi.org/10.1016/0022-4049(86)90004-6**[GS5]**-,*The cohomology of presheaves of algebras*II:*the barycentric subdivision of a small category*(to appear).**[GS6]**-,*The cohomology of presheaves of algebras*III:*Embedding theorems*(to appear).**[Gr]**Alexander Grothendieck,*Sur quelques points d’algèbre homologique*, Tôhoku Math. J. (2)**9**(1957), 119–221 (French). MR**0102537**, https://doi.org/10.2748/tmj/1178244839**[H]**G. Hochschild,*On the cohomology groups of an associative algebra*, Ann. of Math. (2)**46**(1945), 58–67. MR**0011076**, https://doi.org/10.2307/1969145**[M]**Saunders Mac Lane,*Homology*, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR**1344215****[S]**N. E. Steenrod,*Products of cocycles and extensions of mappings*, Ann. of Math. (2)**48**(1947), 290–320. MR**0022071**, https://doi.org/10.2307/1969172**[VZ]**O. E. Villamayor and D. Zelinsky,*Galois theory for rings with finitely many idempotents*, Nagoya Math. J.**27**(1966), 721–731. MR**0206055**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
16A58,
16A61,
18E25,
55N25,
55U10

Retrieve articles in all journals with MSC: 16A58, 16A61, 18E25, 55N25, 55U10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1988-0965749-X

Keywords:
Associative algebra,
bimodule,
Yoneda cohomology,
Hochschild cohomology,
simplicial cohomology,
deformation,
triangulable space

Article copyright:
© Copyright 1988
American Mathematical Society