ABSTRACT. We show that any Borel linear order can be embedded in an order preserving way into 2^α for some countable ordinal α and that any thin Borel partial order can be written as a union of countably many Borel chains.

0. Introduction. We say that (X, \leq) is a Borel order if X and \leq are Borel subsets of \mathbb{R} and \mathbb{R}^2 respectively and \leq is reflexive and transitive. Friedman [F] initiated the study of Borel orders, suggesting that this was an interesting class of uncountable orderings which avoids many of the pathologies of the uncountable. A number of results in this direction were proved in [F, H-S and S]. In this paper we will give several structure theorems for Borel orderings which, in some sense, explain why pathologies are avoided.

(X, \leq) is said to be thin if there is no perfect set of pairwise incomparable elements. Orderings that are thin admit reasonable structure theorems. There is little to say about nonthin orderings. The main results are

Theorem 3.1. If (X, \leq) is a thin Borel order, then for some $\alpha < \omega_1$ there is a Borel $f : X \rightarrow 2^\alpha$ order preserving (where 2^α is ordered lexicographically).

Theorem 5.1. If (X, \leq) is a thin Borel order, then X can be written as a countable union of Borel chains.

These results were proved by the first and third authors. The second author added the results of §4.

To prove these results it is useful to look instead at the lightface (i.e. Δ^1_1) refinements. The proofs rely on the interplay of effective descriptive set theory and forcing. The tools we need are developed in §1 and §2. Other descriptive set-theoretic facts can be found in Moschovakis [M]. As usual in descriptive set theory we will interchange \mathbb{R} and ω^ω whenever convenient.

Notationally, if \leq is an order, $x \approx y$ if $x \leq y$ and $y \leq x$ and $x \not\approx y$ if x and y are incomparable. Lower case latin letters usually denote reals (with e, m, n, i, j reserved for integers). Upper case latin letters denote sets of reals and script letters denote sets of sets of reals.

1. The reflection lemmas. Let W_0, W_1, W_2, \ldots be the usual enumeration of r.e. sets. Let $U \subseteq \omega \times \omega^\omega = \{(e, x) : \forall y \exists n (x|n, y|n, n) \in W_e\}$. Then U is ω-universal Π^1_1. Let $U_e = \{x : (e, x) \in U\}$.

Definition 1.1. If $\mathcal{A} \subseteq \mathcal{P}(\mathbb{R})$ we say \mathcal{A} is Π^1_1 on Π^1_1 if $\{e : U_e \in \mathcal{A}\}$ is Π^1_1.

Received by the editors January 22, 1987 and, in revised form, August 19, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 03E15; Secondary 04A15.

The first and second authors were supported by NSF grants, and the third author was supported by a NSERC grant.
Lemma 1.2 (Reflection). If \(\mathcal{A} \) is \(\Pi^1_1 \) on \(\Pi^1_1 \) and \(Y \in \mathcal{A} \) is \(\Pi^1_1 \), then there is a \(\Delta^1_1 \) \(X \subseteq Y \) such that \(X \in \mathcal{A} \).

Proof. Let \(\Psi : U \to \omega_1 \) be a \(\Pi^1_1 \)-norm. Let \(n, m \in \omega \) such that \(\{ e : U_e \in \mathcal{A} \} = U_n \) and \(Y = U_m \). For \(e \in \omega \) let \(V_e = \{ y \in Y : \Psi(m, y) < \Psi(n, e) \} \) (i.e.: \(y \in V_e \Leftrightarrow y \) gets into \(Y \), before \(U_e \) gets into \(\mathcal{A} \)). Each \(V_e \) is \(\Pi^1_1 \) and we can easily find a recursive function \(f \) such that \(V_e = U_{f(e)} \). By the recursion theorem there is an \(\hat{e} \in \omega \) s.t. \(W_{\hat{e}} = W_{f(\hat{e})} \). Then by the definition of \(U \) and \(f \), \(V_{\hat{e}} = U_{f(\hat{e})} = U_{\hat{e}} \).

If \(U_{\hat{e}} \notin \mathcal{A} \), then \(\Psi(n, \hat{e}) = \infty \) and \(V_{\hat{e}} = Y \). But \(Y \in \mathcal{A} \) and \(U_{\hat{e}} \notin \mathcal{A} \), so this is a contradiction and \(U_{\hat{e}} \in \mathcal{A} \). If \(\alpha = \Psi(n, \hat{e}) < \omega^{\aleph_0} \), then \(V_{\hat{e}} = \{ y : \Psi(m, y) < \alpha \} \) and this set is \(\Delta^1_1 \). Thus \(U_{\hat{e}} \) is the desired set. \(\Box \)

Definition 1.3. Let \(\mathcal{A} \subseteq \mathcal{P}(\mathbb{R})^2 \). We say \(\mathcal{A} \) is \(\Pi^1_1 \) on \(\Pi^1_1 \) if \(\{ (e, e') : \mathcal{A}(U_e, U_{e'}) \} \) is \(\Pi^1_1 \). \(\mathcal{A} \) is monotonic upward if whenever \((Y, Z), Y \subseteq Y' \) and \(Z \subseteq Z' \), then \(\mathcal{A}(Y', Z') \). We say \(\mathcal{A} \) is continuous downward if whenever we have \(Y_0 \supseteq Y_1 \supseteq Y_2 \supseteq \cdots \) and \(Z_0 \supseteq Z_1 \supseteq Z_2 \supseteq \cdots \) such that for all \(n \mathcal{A}(Y_n, Z_n) \), then \(\mathcal{A}(\bigcap Y_n, \bigcap Z_n) \).

Lemma 1.4 (Strong Reflection). If \(\mathcal{A} \subseteq \mathcal{P}(\mathbb{R})^2 \) is \(\Pi^1_1 \) on \(\Pi^1_1 \), monotonic upward and continuous downward, then if \(Y \in \Pi^1_1 \) and \(\mathcal{A}(Y, \neg Y) \), there is a \(\Delta^1_1 \) \(X \subseteq Y \) such that \(\mathcal{A}(X, \neg X) \).

Proof.

Claim. If \(X \subseteq Y \) is \(\Delta^1_1 \), there is a \(\Delta^1_1 \) \(\hat{X} \supseteq X \) such that \(\mathcal{A}(\hat{X}, \neg X) \) and \(\hat{X} \subseteq Y \).

Consider \(B(Z) = \{ Z : \mathcal{A}(Z, \neg X) \) and \(X \subseteq Z \} \). Then \(B \) is \(\Pi^1_1 \) on \(\Pi^1_1 \). Since \(\mathcal{A} \) is monotonic upward and \(\neg Y \subseteq \neg X, B(Y) \). Thus by reflection there is a \(\Delta^1_1 \) \(\hat{X} \supseteq X \) such that \(\mathcal{A}(\hat{X}, \neg X) \) and \(\hat{X} \subseteq Y \).

Let \(X_0 \) be any \(\Delta^1_1 \) subset of \(Y \). Given \(X_n \) let \(X_{n+1} \supseteq X_n \) be \(\Delta^1_1 \) such that \(\mathcal{A}(X_{n+1}, \neg X_n) \) and \(X_{n+1} \subseteq Y \). The procedure for going from \(X_n \) to \(X_{n+1} \) is uniform so \(\langle X_n : n \in \omega \rangle \) is \(\Delta^1_1 \). Let \(X = \bigcup X_n \). Then \(X \) is \(\Delta^1_1 \) and \(X \subseteq Y \).

Since \(\mathcal{A}(X_{n+1}, \neg X_n) \). By monotonicity for all \(n \mathcal{A}(X, \neg X_n) \). Thus by continuity \(\mathcal{A}(X, \neg X) \). But \(\neg X = \bigcap \neg X_n \), so \(\mathcal{A}(X, \neg X) \). \(\Box \)

There is a natural way for \(\mathcal{A} \)'s that satisfy the hypothesis of strong reflection to arise. Let \(P(\bar{x}, \bar{y}) \) be \(\Pi^1_1 \). Let \(\mathcal{A}(X, Y) \Leftrightarrow \forall \bar{x} \notin X \forall \bar{y} \notin Y \ P(\bar{x}, \bar{y}) \). Clearly \(\mathcal{A} \) is \(\Pi^1_1 \) on \(\Pi^1_1 \), monotonic upward and continuous downward. The following corollary gives the flavor of applications of strong reflection.

Corollary 1.5. If \(X \) is \(\Sigma^1_1 \) and linearly ordered by \(\leq \) a \(\Delta^1_1 \) ordering, then there is a \(\Delta^1_1 \) \(Y \supseteq X \) such that \(Y \) is linearly ordered by \(\leq \).

Proof. Let \(\mathcal{A}(Y, Z) \Leftrightarrow \forall x_0, x_1, \exists \neq Y \ x_0 \leq x_1 \lor x_1 \leq x_0 \).

Then \(\mathcal{A} \) satisfies the hypothesis of strong reflection and \(\mathcal{A}(\neg X, X) \). So by strong reflection there is a \(\Delta^1_1 \) \(Z \subseteq \neg X \) such that \(\mathcal{A}(Z, \neg Z) \). Let \(Y = \neg Z \). \(\Box \)

The reflection lemmas provide a uniform treatment for a number of results which otherwise would be proved by an ad hoc mix of \(\Sigma^1_1 \)-separation and Kreisel uniformization arguments.

2. Gandy forcing. Let \(P = \{ A \in \Sigma^1_1 : A \neq \emptyset \} \). We order \(P \) by inclusion (i.e. \(A \leq B \iff A \subseteq B \)). This notion of forcing was used by Harrington [H] to give a new proof of Silver's theorem on \(\Pi^1_1 \) equivalence relations.
Lemma 2.1. If $G \subseteq P$ is generic, then $\bigcap\{A: A \in G\} = \{a\}$ for some $a \in R$.

Let $A \in G$ say $x \in A \leftrightarrow \exists f R(f, x)$ where R is Π^0_1. For $\sigma, \eta \in \omega^\omega$ let $A_{\sigma, \eta} = \{x \supseteq \sigma: \exists f \geq \eta R(f, x)\}$. For each n we can find $\sigma_n, \eta_n \in \omega^\omega$ s.t. $A_{\sigma_n, \eta_n} \in G$ and $\sigma_n \subseteq \sigma_{n+1}$, $\eta_n \subseteq \eta_{n+1}$. Thus if $x = \lim_n \sigma_n$, and $f = \lim_n \eta_n$, then $R(f, x)$. For each $n \{y: y|n = x|n\} \in G$. Thus $\{x\} = \bigcap G$. □

If $b \in R$ we can view b as coding a pair of reals (b_0, b_1).

Lemma 2.2. If b is P-generic, then both b_0 and b_1 are P-generic.

Proof. We show b_0 is P-generic. Let $B \in P$ and let $\mathcal{D} \subseteq P$ be dense open. Let $B' = \{x: \exists y (x, y) \in B\}$, since $B' \in P$ there is $C' \subseteq B'$ s.t. $C' \in \mathcal{D}$. Let $C = \{(x, y): x \in C' \land (x, y) \in B\}$. Then $C \neq \emptyset$, $C \subseteq B$ and $c \Vdash \dot{b} \in C'$. Thus $\mathcal{D'} = \{C \in P: \text{for some } C' \in \mathcal{D}, C \Vdash \dot{b} \in C'\}$ is dense, so b_0 is P-generic. □

In our main results we will be dealing with modified products of Gandy forcing.

Definition 2.3. $P^n = \{A \subseteq R^n: A$ is E^n and $A \neq \emptyset\}$. Let E be a Σ^1_1 equivalence relation. Let $P^n = \{A \subseteq R^n: A$ is E^n and if $(a_0, \ldots, a_n) \in A$, then $\forall i, j \leq n a_i E a_j\}$. Let $P \times E P = \{(Y, A) \in P \times P: (Y \times A) \cap E \neq \emptyset\}$ and $P^n \times E P^n = \{(Y, A) \in P^n \times P^n: \exists (y_0, y_1) \in Y \exists (a_0, a_1) \in A \exists y_0 E y_1 E a_0 E a_1\}$. Each of these sets is ordered by inclusion.

Lemma 2.4. If a, b are $P \times E P$ generic, then a and b are P-generic.

Proof. Let $\mathcal{D} \subseteq P$ be dense open, let $(A, B) \in P \times E P$. Let $A' = \{x \in A: \exists y (x, y) \in E\}$. Let $C \in \mathcal{D}$, $C \subseteq A'$. Then $\langle C, B \rangle \in P \times E P$. Thus $\mathcal{D'} = \{(C, X): C \in \mathcal{D}\}$ is dense in $P \times E P$. So a is P-generic. □

Lemma 2.5. If $(a_0, a_1), (b_0, b_1)$ are $P^n \times E P^n$ generic, then each pair (a_i, b_j) is $P \times E P$ generic.

Proof. We will prove this for a_0, b_0. Let $\mathcal{D} \subseteq P \times E P$ be dense open. Let $(A, B) \in P^n \times E P^n$. Then $\langle A, B \rangle \in P \times E P$. Let $\langle C, D \rangle \leq \langle A, B \rangle$, $\langle C, D \rangle \in \mathcal{D}$. Let $\hat{C} = \{(x, y) \in A: x E y \land x \in C\}$, $\hat{D} = \{(x, y) \in B: x E y \land x \in D\}$. Since $\exists x_0 \in C \exists x_1 \in D x_0 E x_1$, $x_0 \in \hat{A}$ and $x_1 \in \hat{B}$, $\langle \hat{C}, \hat{D} \rangle \in P^n \times E P^n$.

Thus $\mathcal{D'} = \{(X, Y) \in P^n \times E P^n: \{\langle x, y \rangle: x \in X\}, \{\langle x, y \rangle: (x, y) \in Y\} \in \mathcal{D}\}$ is dense. □
We would like to have that if b_0, b_1 are $P \times E P$ generic then $b_0 E b_1$. This seems unlikely in general but is true for an important class of equivalence relations E.

Definition 2.6. We say E is representable if for every x, y if $x \not\sim y$ then there is Δ_1^1 set X such that $x \in X$, $y \not\in X$ and $\forall x \in X \forall y \not\in X \, x \not\sim y$.

Lemma 2.7. If E is representable and a, b are $P \times E P$ generic then $a E b$.

Proof. Suppose not. Let $\langle A, B \rangle \not\Vdash a \not\Vdash b$. There is a Δ_1^1 set X such that $a \in X$, $b \not\in X$ and for all $x \in X$, $y \not\in X \, x \not\sim y$. Let $\bar{A} = A \cap X$, $\bar{B} = B - X$. Since a, b are P-generic, by Lemma 2.1 $\langle \bar{A}, \bar{B} \rangle \in P \times E P$. But clearly $\langle \bar{A}, \bar{B} \rangle \not\in P \times E P$. □

In applications we will be interested in finding perfect sets of mutually generic reals. To obtain $P \times P$ generic reals this is done much as it would be in Cohen forcing. The only difficulty arises if we reach a condition A which is countable. By the effective perfect set theorem if $A \in \Sigma_1^1$ and A is countable, then A is a set of hyperarithmetic reals. In general we will only be doing forcing below conditions which do not contain any hyperarithmetic reals.

Lemma 2.8. If $A \in P$ and $|A| > \aleph_0$, then we can add a perfect set of mutually P-generic reals in A.

Proof. Let $\bar{A} = \{x \in A : x \not\in \Delta_1^1\}$. Then $\bar{A} \in P$ and we can do the usual arguments below \bar{A}. □

Obtaining perfect sets of mutually $P \times E P$ generic reals is somewhat more delicate. We prove only the special case we need.

Lemma 2.9. Let \leq be a Δ_1^1 ordering on R. Suppose for each $A \in P$ we have a Σ_1^1-equivalence relation E_A such that if $B \subseteq A$, then $x E_B y \Rightarrow x E_A y$. Suppose there is a Y s.t. for all $B \subseteq Y$, $B \in P$ there are $b_0, b_1 \in B$ such that $\langle b_0, b_1 \rangle$ are $P \times E_B P$ generic and b_0 and b_1 are incomparable. Then there is a perfect subset of Y of pairwise incomparable elements.

Proof. Let \hat{P} be the set of finite functions $\varphi : t \to \{B \in P : B \subseteq Y\}$ s.t.

(i) $t \subseteq 2^\omega$ is a finite tree,

(ii) $\varphi(\emptyset) = Y$,

(iii) if $\eta \subseteq \tau \in t$, then $\varphi(\eta) \supseteq \varphi(\tau)$,

(iv) for $\eta^0, \eta^1 \in t \langle \varphi(\eta^0), \varphi(\eta^1) \rangle \not\Vdash E_{\varphi(\eta)} \hat{y}_0$ incomparable to \hat{y}_1.

(v) Let $L_t = \{\eta \in t : \forall \tau \supseteq \eta \, \eta \not\in t\}$, then there is $\langle a_\eta : \eta \in L_t \rangle$ s.t. $a_\eta \in \varphi(\eta)$ and if $\eta, \tau \in L_t$, then $a_\eta E_{\varphi(\eta \wedge \tau)} a_\tau$ for $\eta \wedge \tau = \sigma$ where $\sigma \subseteq \eta, \tau$ and $\eta(\sigma) \neq \tau(\sigma)$.

Order \hat{P} by extension. Suppose $\Psi : T \to P$ is generic. Let $\hat{\Psi} : [T] \to \hat{P}$ by $\hat{\Psi}(f) = \bigcap \{\Psi(f|n) : n \in \omega\}$ it is routine to see that if $f, g \in [T]$, then $\hat{\Psi}(f)$ and $\hat{\Psi}(g)$ are $P \times E_{\psi(f \cap g)} P$ generic and hence incomparable. We need only show that T is perfect.

Suppose $\varphi : t \to P$ is in \hat{P} and $\eta \in L_t$. Let $A_\eta = \{x \in \varphi(\eta) : \exists (b_\sigma)_{\sigma \in L_t} \, b_\eta = x$ and $b_\sigma E_{\varphi(\sigma \wedge \tau)} b_\tau$ for all $\sigma, \tau \in L_t\}$. Let $B_0, B_1 \subseteq A_\eta$, $B_0, B_1 \in P$ s.t. $\langle B_0, B_1 \rangle \not\Vdash \hat{y}_0$ and \hat{y}_1 are incomparable. Let $\hat{\varphi} : t \cup \{\eta^0, \eta^1\} \to P$ s.t. $\hat{\varphi} \supseteq \varphi$ and $\hat{\varphi}(\eta^i) = B_i$. Then $\hat{\varphi} \in \hat{P}$. Thus if $\Psi : T \to P$ is generic, T is perfect.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
3. Representing Δ^1_1 orderings.

Theorem 3.1. If $\langle X \leq \rangle$ is a thin Δ^1_1 order, then there is $\alpha < \omega^c_k$ and a Δ^1_1 order preserving $f : X \to 2^\alpha$.

Proof. Without loss of generality $X = \mathbb{R}$.

Let $\mathcal{F} = \{ f : \mathbb{R} \to 2^\omega : \alpha < \omega^c_k, f \in \Delta^1_1$ and $x \leq y \Rightarrow f(x) \leq f(y) \}$.

Claim 1. \mathcal{F} is Π^1_1.

$n = \langle n_0, n_1 \rangle$ codes an element of \mathcal{F},

1. n_0 codes a recursive ordinal α,
2. n_1 is a Δ^1_1 code for a subset G of $\mathbb{R} \times 2^\alpha$,
3. $\forall x \exists y \in \Delta^1_1(x) (G(x, y) \land \forall z (G(z, z) \rightarrow z = y))$ and
4. $\forall x, y, z, w (\langle x \leq y \land G(x, z) \land G(y, w) \rangle \rightarrow x \leq w \text{[in } 2^\alpha\rangle]$.

Since the quantifier $\exists y \in \Delta^1_1(x)$ is really universal, this is easily seen to be Π^1_1.

For $F \in \mathcal{F}$ we define an equivalence relation E_F by $x E_F y$ if and only if $F(x) = F(y)$. Let $E = \bigcap \{ E_F : F \in \mathcal{F} \}$. Then $x E y \Leftrightarrow \forall F \in \Delta^1_1 (F \in \mathcal{F} \Rightarrow F(x) = F(y))$. Since \mathcal{F} is Π^1_1 and $\forall F \in \Delta^1_1$ is really existential, E is a Σ^1_1-equivalence relation.

Our main claim is that $E = \approx$. Before establishing the main claim we will show how to establish the theorem from it. For the moment assume $E = \approx$.

Consider the following $\mathcal{A} \subseteq \mathcal{P}(\mathbb{R}), \mathcal{A}(X) \equiv \forall x, y (x \neq y \rightarrow \exists F \in \Delta^1_1 F \in X, F \in \mathcal{F}$ and $F(x) \neq F(y))$. Then \mathcal{A} is Π^1_1 on Π^1_1 and $\mathcal{A}(\mathcal{F})$ so by reflection there is a $\Delta^1_1 X \subseteq \mathcal{F}$ s.t. $\forall x, y x \neq y \rightarrow \exists F \subseteq X F(x) \neq F(y)$.

Let F_0, F_1, F_2, \ldots be a Δ^1_1 enumeration of X. Define F^*_0, F^*_1, \ldots as follows.

(i) $F^*_0 = F_0$.

(ii) Suppose $F^* : \mathbb{R} \to 2^\gamma$ and $F_{n+1} : \mathbb{R} \to 2^\alpha$. Define $F^*_{n+1} : \mathbb{R} \to 2^{\alpha + \gamma}$ by $F^*_{n+1}(x) = F^*_n(x) \cap F_{n+1}(x)$.

It is easily seen that F^*_{n+1} is order preserving and if $F_i(x) \neq F_i(y)$ for any $i \leq n + 1$, then $F^*_{n+1}(x) \neq F^*_{n+1}(y)$. Let $F^* = \lim F^*_n$. Then F^* is Δ^1_1 (note: By boundedness we can find $\delta < \omega^c_k$ s.t. for all $n F_n : \mathbb{R} \to 2^\alpha$ for some $\alpha < \delta$. Thus $F^* : \mathbb{R} \to 2^\alpha$ for some $\alpha \leq \delta \cdot \omega$). Let $x \neq y$, $F^*(x) \neq F^*(y)$. Thus F is the desired function. Thus we need only establish that $E = \approx$.

Let $Z = \{ x : \exists y x E y \land x \neq y \}$. Clearly Z is Σ^1_1. If $Z = \emptyset$, then $E = \approx$, so we assume for purposes of contradiction that $Z \neq \emptyset$. Let $\mathcal{P} = \{ A \in \Sigma^1_1 : A \neq \emptyset \land A \subseteq Z \}$.

Claim 2. If a and b are $\mathcal{P} \times_E \mathcal{P}$ generic, then it is not the case that $a < b$ (or symmetrically it is not the case that $b < a$).

Let $\langle A, B \rangle \in \mathcal{P} \times_E \mathcal{P}$ s.t. $\langle A, B \rangle \parallel \mathcal{A} \neq \emptyset$.

Case 1. $\forall a \in A \forall b \in B (a E_b \Rightarrow a \neq b)$.

Let $A_0 = \{ x : \exists y \in A y E x \land y \geq x \}$. Let $B_0 = \{ x : \exists y \in B y E x \land x \leq y \}$. Now A_0 and B_0 are Σ^1_1. A_0 is the downward closure of A in each class B_0 is the upward closure of B in each class. Clearly A_0 and B_0 are disjoint. Let $\mathcal{A}(X, Y) \equiv \forall x, y (x \notin X \land y \notin Y \rightarrow \exists z (y E z \lor x E y \land y \neq z))$. Then \mathcal{A} satisfies the requirements for strong reflection and $\mathcal{A}(\neg A_0, A_0)$. Thus there is a $\Delta^1_1 C \supseteq A_0$ s.t. $\mathcal{A}(\neg C, C)$. Thus C is downward closed and disjoint from B_0.

Subclaim. There is $F^* \in \mathcal{F}$ s.t. $\forall x, y (\langle x E_F \ast y \land y \leq x \land x \in C \rangle \rightarrow y \in C)$. Let $\mathcal{A}(X) \equiv \forall x, y (\langle \exists f \in \Delta^1_1 f \in X \land f(x) \neq f(y) \rangle \lor y \neq x \lor x \notin C \land y \in C)$. Then \mathcal{A} is Π^1_1 on Π^1_1 and $\mathcal{A}(\mathcal{F})$. Thus by reflection there is a $\Delta^1_1 X \subseteq \mathcal{F}$ s.t.
Let \(\mathcal{A}(X) \). As above we can build \(F^* \in \mathcal{F} \) such that \(x \in F^*y \) iff for all \(F \in X \) \(x \in Fy \).

So \(\forall x, y \ ((xEF \cdot y \land y \leq x \land x \in C) \rightarrow y \in C) \).

Suppose \(F^*R \rightarrow 2^\alpha \). Let \(G: R \rightarrow 2^{\alpha+1} \) by

\[
G(X) = \begin{cases}
F^*(x)^0, & x \in C, \\
F^*(x)^1, & x \notin C.
\end{cases}
\]

It is easy to see that \(G \in \mathcal{F} \) and if \(x \in F^*y \), \(x \in C \) and \(y \notin C \), then \(x \in_\mathcal{G}y \). In particular if \(a \in A \) and \(b \in B \), then a \(\mathcal{E}b \), contradicting the assumption that \(\langle A, B \rangle \in P \times E P \).

Case 2. There are \(a \in A \), \(b \in B \) s.t. \(a \mathcal{E}b \) and \(b \leq a \).

Let \(D = \{(a, b) : a \in A, b \in B, a \mathcal{E}b \land b \leq a \} \in P^2_E \). Let \((a_1, b_1) \), \((a_2, b_2) \) be \(P^2_E \times E P^2_E \) generic such that \((a_1, b_1), (a_2, b_2) \in D \). By 2.5 \((a_1, b_2) \) and \((a_2, b_1) \) are each \(P \times E P \) generic, so since \(a_1 \in A, b_1 \in B, a_1 < b_2 \) and \(a_2 < b_1 \). But \(a_1 \geq b_1 \) and \(a_2 \geq b_2 \) so \(a_1 < a_2 \) a contradiction.

This completes the proof of Claim 2.

Claim 3. If \(a \) and \(b \) are \(P \times E P \) generic, then it is not the case that \(a \approx b \).

Suppose \(\langle A, B \rangle \in P \times E P \) and \(\langle A, B \rangle \models \check{a} \approx \check{b} \).

Case 1. \(\exists a \in A, b \in B a \mathcal{E}b \land a < b \) (or \(\exists a \in A b \in B a \mathcal{E}b \land b < a \)).

Let \(D = \{(a, b) : a \in A, b \in B, a \mathcal{E}b \land a < b \} \). Let \((a_0, b_0), (a_1, b_1) \) be \(P^2_E \times E P^2_E \) generic with both generic filters containing \(D \). Then by 2.5 \((a_0, b_1) \) and \((a_1, b_0) \) are \(P \times E P \) generic. Thus \(a_0 < b_0 \approx a_1 < b_1 \approx a_0 \) a contradiction.

Case 2. \(\exists a \in A, b \in B a \mathcal{E}b \land a \mathcal{E}b \).

Let \(D = \{(a, b) : a \in A, b \in B, a \mathcal{E}b \land a \mathcal{E}b \} \). Let \((a_0, b_0), (a_1, b_1) \) and \((a_2, b_2) \) be mutually \(P^2_E \times E P^2_E \) generic with all three generic filters containing \(D \). Then \(a_0 \approx b_0 \approx a_1 \approx b_1 \approx a_0 \). So we have a contradiction.

Case 3. \(\forall a \in A \forall b \in B a \mathcal{E}b \Rightarrow a \approx b \).

Let \(C = \{x : x \in A \land \exists y \in B x \mathcal{E}y \} \). Then \(C \) is \(\Sigma^1_1 \) and \(\forall x, y \in C \ (x \mathcal{E}y \Rightarrow x \approx y) \).

Since \(A \subseteq Z, C \subseteq Z \). Thus \(\forall x \in C \exists y \ (x \mathcal{E}y \land x \neq y) \). We claim this is impossible.

Subclaim. Let \(X \) be \(\Sigma^1_1 \). Suppose \(\forall x, y \in X \ (x \mathcal{E}y \Rightarrow x \approx y) \). Then \(\forall x \in X \forall y \ (x \mathcal{E}y \Rightarrow x \approx y) \).

Suppose not. Let \(B^+ = \{x : \exists y \in X x \mathcal{E}y \land (x > y \lor x \leq y) \} \) and \(B^- = \{x : \exists y \in X x \mathcal{E}y \land (x < y \lor x \geq y) \} \). One of these is nonempty assume it is \(B^+ \). Let \(A_0 = \{x : \exists y \in X x \mathcal{E}y \land x \leq y \} \). Since \(E/X = \approx \), \(A_0 \cap B^+ = \emptyset \). As in Case 1 of Claim 3 by strong reflection we can find a \(\Delta^1_1 \) \(C \) s.t. \(A_0 \subseteq C, B^+ \cap C = \emptyset \) and \(C \) is downward closed in each \(E \) class it intersects. By a second reflection argument we can find an \(F \in \mathcal{F} \) s.t. if \(x \in C \land x \mathcal{E}Fy \land x \geq y \), then \(y \in C \). Letting

\[
G(x) = \begin{cases}
F(x)^0, & x \in C, \\
F(x)^1, & x \notin C.
\end{cases}
\]

We see that if \(x \mathcal{E}Fy \) and \(x \in A_0 \) and \(y \in B^+ \), then \(x \mathcal{E}Gy \), a contradiction. This establishes the subclaim and Claim 3.

Thus if \(a \) and \(b \) are \(P \times E P \) generic, they are incomparable in \(\leq \). By 2.9 it is possible to add a perfect set of mutually \(P \times E P \) generic elements. But then in the generic extension there is a perfect set of pairwise incomparable elements. This is \(\Sigma^1_2 \) so by Shoenfield absoluteness, there is already a perfect set of pairwise incomparable elements. Thus \(\leq \) is not thin, a contradiction.
COROLLARY 3.2 (HARRINGTON-SHELAH [HS]). If \leq is a thin Borel order, there are no ω_1-chains.

Theorem 3.1 is similar in spirit to the following result in mathematical economics.

THEOREM 3.3 (DEBREU [D]). If (X, \leq) is a closed prelinear order then there is a continuous order preserving $f : X \to \mathbb{R}$.

4. Separable Δ^1_1 orders.

DEFINITION 4.1. We say (X, \leq) is separable iff there is a countable $S \subseteq X$ such that for any $x_0, x_1 \in X$ if $x_0 < x_1$, there is $s \in S$ $x_0 < s < x_1$.

If (X, \leq) is a separable Borel prelinear order, then it is easy to see that there is a order preserving Borel $f : X \to \mathbb{R}$. The main goal of this section is to prove the effective version of this result.

LEMMA 4.2. If (X, \leq) is a Δ^1_1 prelinear order then either

(i) there is a perfect set of pairwise disjoint closed intervals $[a, b]$ with $a < b$ or

(ii) if $x_0 < x_1$, there is a Δ^1_1 downward closed Y such that $x_0 \in Y$ and $x_1 \notin Y$.

PROOF. Without loss of generality $X = \mathbb{R}$. We view each real x as coding a pair (x_0, x_1). Let $A = \{x : x_0 < x_1 \land \forall Y \in \Delta^1_1 [\forall z, y ((z \leq y \land y \in Y) \to z \in Y)] \to (x_0 \notin Y \lor x_1 \in Y)\}$. The quantifier $\forall Y \in \Delta^1_1$ is essentially existential so A is Σ^1_1.

Let $P = \{B \in \Sigma^1_1 : B \neq \emptyset\}$.

Claim 1. If $r \in \mathbb{R}$ and \hat{a} is a name for a generic real then $A \vDash \neg(\hat{a}_0 < r < \hat{a}_1)$.

Suppose not. Let $B \subseteq A$ such that $B \vDash \hat{a}_0 < r < \hat{a}_1$.

Case 1. There are $b, b' \in B$ s.t. $b_0 < b'_0$.

Let $C = \{c : c_0 \in B, c_1 \in B \land c_0 < c_1 \geq c_0\}$. Let c be P generic below C. Then by 2.2 c_0 and c_1 are also P generic so $c_0 < r < c_0$ and $c_1 < r < c_11$. But $c \in C$ so $c_0 < c_10$. Thus $r < r$ a contradiction.

Case 2. For all $b, b' \in B b_0 < b'_1$.

Let $B^- = \{x : \exists y \in B x \leq y_0\}$ and $B^+ = \{x : \exists y \in B x \geq y_1\}$. Then B^- and B^+ are disjoint Σ^1_1 sets which are downward and upward closed respectively. Let $\mathcal{A}(X, Y) \leftrightarrow \forall z \notin X z \notin B^+ \land \forall z \notin X \forall y \notin Y y \notin x$. Then \mathcal{A} satisfies the hypothesis for strong reflection and $\mathcal{A}(\neg B^-, B^-)$. Thus by strong reflection there is a $\Delta^1_1 C$ such that $B^- \subseteq C$, C is downward closed and $C \cap B^+ = \emptyset$. But then if $b \in B b_0 \in C$ and $b_1 \notin C$. Thus $B \notin A$ a contradiction.

Claim 2. If $r \in \mathbb{R}$, then $A \vDash \hat{a}_0 \neq r$ and $\hat{a}_1 \neq r$. Suppose $B \in P$, $B \subseteq A$ and $B \vDash \hat{a}_0 = r$. If $b \in B$ and $b_0 \neq r$, choose n such that $b_0(n) \neq r(n)$. Then $B' = \{c \in B : c(n) = b_0(n)\} \in P$ and $B' \vDash \hat{a}_0 = r$. Thus for all $b \in B b_0 = r$. But then $\{r\} = \{x : \exists b \in B b_0 = x\}$ is a Σ^1_1 singleton, so $r \in \Delta^1_1$. Then $Y = \{x : x \leq r\}$ is a downward closed Δ^1_1 set separating b_0 from b_1 for $b \in B$, a contradiction.

Claim 3. If a and b are $P \times P$ generic, below A then $[a_0, a_1] \cap [b_0, b_1] = \emptyset$.

This is clear from Claims 1 and 2 since b is generic over a.

To prove the lemma we find a perfect set of mutually P generic reals below A. By Claim 3 these give rise to a perfect set of pairwise disjoint intervals.

THEOREM 4.3. If (X, \leq) is a Δ^1_1 prelinear order, then either

(i) there is a perfect set of pairwise disjoint closed intervals $[a, b]$ with $a < b$, or

(ii) there is a $\Delta^1_1 F : X \to \mathbb{R}$ order preserving.
PROOF. Assume (i) fails. Let $\mathcal{F} = \{f : X \to R : f \text{ is } \Delta_1^1 \text{ and } x \leq y \Rightarrow f(x) \leq f(y)\}$. As in 3.1 \mathcal{F} is Π_1^1.

Claim 1. If $x < y$, then there is $f \in \mathcal{F}$ s.t. $f(x) < f(y)$. By Lemma 4.2 there is a downward closed $Y \in \Delta_1^1$ such that $x \in y$ and $y \notin Y$. Let

$$f(z) = \begin{cases} 0, & z \in Y, \\ 1, & z \notin Y. \end{cases}$$

Clearly f separates x and y.

Claim 2. There is a Δ_1^1 $C \subseteq \mathcal{F}$ such that for all $x < y$ there if $f \in C$ such that $f(x) < f(y)$.

Let $\mathcal{A}(Z) = \forall x, y \in X (x < y \to \exists f \in \Delta_1^1 f \in Z \land f(x) < f(y))$. Clearly \mathcal{A} is Π_1^1 on Π_1^1 and $\mathcal{A}(\mathcal{F})$, so by reflection there is a Δ_1^1 $C \subseteq \mathcal{F}$ such that $\mathcal{A}(C)$.

Let f_0, f_1, f_2 be a Δ_1^1 enumeration of C. By composing f_n with an isomorphism $h_n : R \to (1/2^{n+1}, 1/2^n)$ we may assume $F_n : X \to (1/2^{n+1}, 1/2^n)$. Let $F(x) = \sum_{n=0}^{\infty} f_n(x)$. It is easy to see that F is well defined and Δ_1^1.

Suppose $x \leq y$, then for any $n \in \omega_f n(x) \leq f_n(y)$. Thus $\sum_{n=0}^{\infty} f_n(x) \leq \sum_{n=0}^{\infty} f_n(y)$. If $x < y$, there is a least n s.t. $f_n(x) < f_n(y)$. Clearly $\sum_{n \neq i} f_i(x) < \sum_{n \neq i} f_i(y) = F(y)$. Thus F is order preserving. F is the desired function. □

COROLLARY 4.4. If (X, \leq) is a separable Δ_1^1 prelinear order there is a Δ_1^1 $f : X \to R$ order preserving.

COROLLARY 4.5 (FRIEDMAN [F]). If (X, \leq) is a Borel prelinear order then (X, \leq) is separable or there is a perfect set of totally isolated points.

COROLLARY 4.6 (FRIEDMAN-SHELAH [F, St]). There is no Borel Suslin line.

5. Decomposing thin Δ_1^1 orders. The following result is an analog of Dilworth's result [D] that every partial order of width n can be written as a union of n chains.

THEOREM 5.1. If (X, \leq) is a thin Δ_1^1 prepartial order, then there are Δ_1^1 chains $(X_n : n \in \omega)$ such that $X = \bigcup_{n \in \omega} X_n$.

PROOF. Without loss of generality assume $X = R$. Let $Z = \{Y \in \Sigma_1^1 : \leq \text{ is a prelinear ordering on } Y\}$. Let $W_0 = \{Y : Y \in Z\}$. If $Y \in Z$, then by 1.5 there is a Δ_1^1 $X \supseteq Y$ such that $X \in Z$. Thus $z \in W_0 \iff \exists Y \in \Delta_1^1 (\forall x, y \in Y (x \leq y \lor y \leq x) \land z \in Y)$. So by familiar arguments W_0 is Δ_1^1. Let $W = -W_0$. If $W = \emptyset$, then X is the union of countably many Δ_1^1 chains. So we assume $W \neq \emptyset$. We will reach a contradiction if we can show there is a nonempty linearly orderly $\Sigma_1^1 X \subseteq W$.

For $Y \in \Sigma_1^1$, $Y \neq \emptyset$, $Y \subseteq W$, let $\mathcal{F}_Y = \{F \in \Delta_1^1 : \exists \alpha < \omega^C F : R \to 2^\alpha \text{ s.t. } \forall x, y \in Y F(x) < F(y) \to x < y\}$. For $F \in \mathcal{F}_Y$ let $x E_F y \iff F(x) = F(y)$ and $x E_Y y \iff \forall F \in \mathcal{F}_Y F(x) = F(y)$. As in 3.1 each \mathcal{F}_Y is Π_1^1 and each E_Y is Σ_1^1 and representable.

If $x, y \in Y$ and $x E_Y y$, then there is $F \in \mathcal{F}$ such that $F(x) \neq F(y)$. Thus x and y must be comparable. If for all $x, y \in Y x E_Y y \Rightarrow x \approx y$, then \leq linear orders Y, a contradiction. Thus for each Y we may assume $\exists x, y \in Y (x E_Y y \land x \neq y)$. License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Main claim. For $Y \subseteq W$ either (a) there are $a, b \in Y \times E_Y$, P generic with a and b incomparable or (b) Y is linearly ordered. If (a) holds then by 2.9 \prec is not thin and if b holds we reach a contradiction. Thus the main claim suffices. So far now we assume that any two $P \times E_Y$ P generic elements of Y are comparable.

Let $A = \{a \in Y : \exists b \in Y b \in E_Y a \wedge b \neq a\}$. If $A = \varnothing$, Y is linearly ordered so we may assume $A \neq \varnothing$.

Claim 1. If b and c are $P \times E_Y$ P generic then $b \not\prec c$.

Suppose $(B_0, C_0) \models b \approx \hat{c}$. Let $B = \{x \in B_0 : \exists y \in C_0 x \in E_Y y\}$. $C = \{x \in C_0 : \exists y \in B x \in E_Y y\}$. Since $(B_0, C_0) \in P \times E_Y P B$ and C are nonempty.

Subclaim. $\forall b \in B \forall c \in C b \in E_Y c \Rightarrow c \not\prec b$.

Assume there are $b \in B, c \in C$, such that $b \not\prec c$ (the case $b \succ c$ is symmetric). Let $D = \{(b, c) : b \in B, c \in C, b \in E_Y c \text{ and } b \not\prec c\}$. Let $(b_0, c_0), (b_1, c_1) \in D$ be $P^2_E \times E_Y P^2_E$ generic. Then (b_0, c_1) and (b_1, c_0) are $P \times E_Y P$ generic so $b_0 < c_0 \approx b_1 < c_1 \approx b_0$, a contradiction.

Thus for all $b, b' \in B$ if $b \in E_Y b'$, then $\exists c \in C b \in E_Y c \not\prec b'$. But then $b \approx c \approx b'$ so $\forall b, b' \in B b \in E_Y b' \Rightarrow b \approx b'$. Next consider $\{d \in Y : \exists b \in B b \in E_Y d \text{ and } b, d \text{ are incomparable}\}$. This must be empty else we can find $b, d \in B \times D P \times E_Y P$ generic and incomparable, contradicting our assumption. Thus for any $d \in Y b \in B$ if $b \in E_Y d$, then $b \not\prec d$ and $b \in E_Y d$ so $d \not\prec b$. Let $\mathcal{A}(U, V) \Leftrightarrow \forall u \notin V \forall v \notin V \exists u \in B \forall v \notin B u \in E_Y v \Rightarrow u < v$. Then $\mathcal{A}(-B^-, B^-)$ so by strong reflection we can find $\hat{b} \in \Delta_1^1$ such that $\hat{b} \not\prec B^-, \hat{b} \not\prec \hat{b}$ and $\forall u \in \hat{B} \forall v \notin \hat{B} u \in E_Y v \Rightarrow u < v$. Then $\mathcal{D}(U) \Leftrightarrow \forall x, y \in Y \exists F \in \Delta_1^1 F \in U \exists F \not\prec \forall x \notin \hat{B} \vee y \in \hat{B} \wedge x < y$. Then \mathcal{D} is Π^1_1 on Π^1_1 and $\mathcal{D}(\mathcal{F})$. Hence by reflection there is $X \subseteq X$ s.t. X is Δ_1^1 and for all $x, y \in Y (x \in \hat{B} \wedge y \notin \hat{B} \wedge x < y) \rightarrow \exists F \in X F(x) \not\prec F(y)$. As in 3.1 we can find an $F^* \in \mathcal{F}_Y$ such that for all $x, y F^*(x) \not\prec F^*(y)$ iff there is an $F \in X$ such that $F(x) \not\prec F(y)$. Let

$$G(x) = \begin{cases} F(x)^0, & x \in \hat{B}, \\ F(x)^1, & x \notin \hat{B}. \end{cases}$$

Suppose $x, y \in Y$ if $G(x) < G(y)$, then either $F(x) < F(y)$, in which case $x < y$, or $F(x) = F(y)$ and $x \in \hat{B}$ and $y \notin \hat{B}$ so $x < y$. Thus $G \in \mathcal{F}_Y$. Moreover since $\hat{B} \not\prec \hat{B}$, G splits an E_Y class, a contradiction.

Claim 2. If $(B, C) \models b \approx \hat{c}$, then $\forall b, c \in B \times E_Y C b \prec c$. (We abbreviate this as $B \prec_{E_Y} C$.)

Let $B' = \{b : \exists c \in C b \in E_Y c \wedge b \neq c\}$ and assume $B' \neq \varnothing$. Suppose $b_0, b_1 \in B' \times E_Y B'$ and $P \times E_Y P$ generic. By our assumption $b_0 \approx b_1$ or $b_1 \approx b_0$. By Claim 1 $b_0 \neq b_1$. Assume $b_0 < b_1$. Let $B_0, B_1 \subseteq B'$ s.t. $(B_0, B_1) \models b_0 \approx b_1$. Let $D = \{(b_0, c) \in B_0 \times E_Y C : b_0 \not\prec c\}$. Let $(b_0, c), b_1 \in P^2_E \times E_Y P$ generic with $(b_0, c) \in D, b_1 \in B_1$. By 2.7 (b_0, b_1) are $P \times E_Y P$ generic so $b_0 < b_1$. Further c and b_1 are $P \times E_Y P$ generic. Thus since $b_1 \in B, b_1 < c$. But then $b_0 < b_1 < c$ a contradiction.
Suppose $(B, C) \models \varphi \ b < c$. Then by Claim 2 $B <_{E_Y} C$. Let $\overline{B} = \{x: \exists b \in B \ \text{s.t.} \ \forall y \in C \ \exists d \in B \ y \leq d < x \}$. Let $\mathcal{A} (U, V) \iff \forall u \in U \ \forall v \in V (u \leq_Y v \lor v \leq u) \ \land \forall z \in Z \ \forall y \in C \ z < y$. Then $\mathcal{A} (\overline{B}, \overline{B})$ so by strong reflection there is a $\Delta^1 \overline{B} \supseteq \overline{B}$ s.t. $\overline{B} \cap C = \emptyset$ and \overline{B} is downward closed in each E_Y class it intersects.

Claim 3. $\forall x, y \in B \land y \notin B \land x \leq_Y y \rightarrow x < y$. Suppose not. Let $D = \{d \notin B: \exists b \in B \ b \leq_Y d \land b \notin d \land d \in Y\}$. We can find $d_0, d_1 \in D$ s.t. d_0 and d_1 are $\mathbf{P} \times_{E_Y} \mathbf{P}$ generic. By our assumption and Claim 1 $d_0 < d_1$ or $d_1 < d_0$. Say $(D_0, D_1) \models d_0 < d_1$. By Claim 2 $D_0 <_{E_Y} D_1$. Let $B_1 = \{b \in B: \exists d \in D_1 (b \leq_Y d \land b \notin d_1)\}$. Let $(b, d_0) \in B \times_{E_Y} D_0$ be \mathbf{P} generic. Then by assumption and Claim 1 b and d_0 are comparable. Since \overline{B} is downward closed $b < b_0$. Thus for all $d_1 \in D_1$ if $b \leq_Y d_1$, then $b < d_0 < d_1$, a contradiction.

Thus \overline{B} is Δ^1, downward closed and if $\exists b \in \overline{B} \ y \in Y \ y \leq_Y b$ and $y \notin \overline{B} \ y > b$. Now by reflection arguments similar to those in Claim 1, we can find a $G \in \mathcal{F}_Y$ which splits some E_Y class. This gives the contradiction which proves the main claim and the theorem. □

COROLLARY 5.2 (SHELAH [S]). If (X, \leq) is a Borel order and there is an uncountable set of pairwise incomparable elements, then there is a perfect set of pairwise incomparable elements.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT CHICAGO, CHICAGO, ILLINOIS 60680

DEPARTMENT OF MATHEMATICS, HEBREW UNIVERSITY, JERUSALEM, ISRAEL

DEPARTMENT OF MATHEMATICS, SIMON FRASER UNIVERSITY, BURNABY, B. C., CANADA V5A 1S6

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903