Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Multilinear convolutions defined by measures on spheres


Author: Daniel M. Oberlin
Journal: Trans. Amer. Math. Soc. 310 (1988), 821-835
MSC: Primary 42A85; Secondary 42B15
DOI: https://doi.org/10.1090/S0002-9947-1988-0943305-7
MathSciNet review: 943305
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \sigma $ be Lebesgue measure on $ {\Sigma _{n - 1}}$ and write $ \sigma = ({\sigma _1}, \ldots ,{\sigma _n})$ for an element of $ {\Sigma _{n - 1}}$. For functions $ {f_1}, \ldots ,{f_n}$ on $ {\mathbf{R}}$, define

$\displaystyle T({f_1}, \ldots ,{f_n})(x) = \int_{{\Sigma _{n - 1}}} {{f_1}(x - {\sigma _1}) \cdots {f_n}(x - {\sigma _n})\,d\sigma ,\qquad x \in {\mathbf{R}}.} $

This paper partially answers the question: for which values of $ p$ and $ q$ is there an inequality

$\displaystyle \vert\vert T({f_1}, \ldots ,{f_n})\vert{\vert _q} \leqslant C\vert\vert{f_1}\vert{\vert _p} \cdots \vert\vert{f_n}\vert{\vert _p}?$


References [Enhancements On Off] (What's this?)

  • [1] J. Bergh and J. Löfström, Interpolation spaces, Springer-Verlag, Berlin, 1976.
  • [2] R. R. Coifman and Y. Meyer, Fourier analysis of multilinear convolutions, Caldéron's theorem, and analysis on Lipschitz curves, Euclidean Harmonic Analysis (College Park, Md., 1979), Lecture Notes in Math., vol. 779, Springer-Verlag, Berlin, 1980, pp. 104-122. MR 576041 (81g:42021)
  • [3] M. Murray, Multilinear convolutions and transference, Michigan Math. J. 31 (1984), 321-330. MR 767611 (86c:42003)
  • [4] D. Oberlin, A multilinear Young's inequality, Canad. Math. Bull. (to appear). MR 956371 (90b:43003)
  • [5] E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970. MR 0290095 (44:7280)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42A85, 42B15

Retrieve articles in all journals with MSC: 42A85, 42B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0943305-7
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society