Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The $ q$-Selberg polynomials for $ n=2$


Author: Kevin W. J. Kadell
Journal: Trans. Amer. Math. Soc. 310 (1988), 535-553
MSC: Primary 05A30; Secondary 33A15, 33A30, 33A75
DOI: https://doi.org/10.1090/S0002-9947-1988-0973170-3
MathSciNet review: 973170
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We have conjectured that Selberg's integral has a plethora of extensions involving the Selberg polynomials and proved that these are the Schur functions for $ k = 1$. We prove this conjecture for $ n = 2$ and show that the polynomials are, in a formal sense, Jacobi polynomials. We conjecture an orthogonality relation for the Selberg polynomials which combines orthogonality relations for the Schur functions and Jacobi polynomials. We extend a basic Schur function identity.

We give a $ q$-analogue of the Selberg polynomials for $ n = 2$ using the little $ q$-Jacobi polynomials.


References [Enhancements On Off] (What's this?)

  • [1] G. E. Andrews and R. A. Askey, $ q$-analogueues of the classical orthogonal polynomials and applications (to appear).
  • [2] K. Aomoto, Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Anal. 18 (1987), 545-549. MR 876291 (88h:17016)
  • [3] R. Askey, The $ q$-gamma and $ q$-beta functions, Appl. Anal. 8 (1978), 125-141. MR 523950 (80h:33003)
  • [4] -, Some basic hypergeometric extensions of integrals of Selberg and Andrews, SIAM J. Math. Anal. 11 (1980), 938-951. MR 595822 (82e:33002)
  • [5] R. Askey and M. Ismail, Recurrence relations, continued fractions and orthogonal polynomials, Mem. Amer. Math. Soc., # 300, 1984. MR 743545 (85g:33008)
  • [6] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., # 319, 1985. MR 783216 (87a:05023)
  • [7] W. N. Bailey, Generalized hypergeometric series, Cambridge Math. Tract # 32, Cambridge Univ. Press, Cambridge, 1935 (reprinted by Hafner, New York, 1964). MR 0185155 (32:2625)
  • [8] I. P. Goulden, private communication.
  • [9] L. Habsieger, Une $ q$-intégrale de Selberg-Askey, SIAM J. Math. Anal. (to appear). MR 965268 (89m:33002)
  • [10] W. Hahn, Über polynome, die gleichzeitig zwei verscheidenen Orthogonalsystemen angehören, Math. Nachr. 2 (1949), 263-278. MR 0032858 (11:356f)
  • [11] F. H. Jackson, On $ q$-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
  • [12] K. W. J. Kadell, A proof of some $ q$-analogues of Selberg's integral for $ k = 1$, SIAM J. Math. Anal. 19 (1988), 944-968. MR 946654 (89h:33006a)
  • [13] -, A proof of Askey's conjectured $ q$-analogue of Selberg's integral and a conjecture of Morris, SIAM J. Math. Anal. 19 (1988), 969-986. MR 946655 (89h:33006b)
  • [14] M. Rahman, Another conjectured $ q$-Selberg integral, SIAM J. Math. Anal. 17 (1986), 1267-1279. MR 853529 (88c:33002)
  • [15] A. Selberg, Bemerkninger om et multipelt integral, Norsk. Mat. Tiddskr. 26 (1944), 71-78. MR 0018287 (8:269b)
  • [16] R. P. Stanley, Theory and application of plane partitions, Parts 1 and 2, Stud. Appl. Math. 50 (1971), 167-188 and 259-279. MR 0325407 (48:3754)
  • [17] G. Szegö, Orthogonal polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1975.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 05A30, 33A15, 33A30, 33A75

Retrieve articles in all journals with MSC: 05A30, 33A15, 33A30, 33A75


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0973170-3
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society