Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The resolvent parametrix of the general elliptic linear differential operator: a closed form for the intrinsic symbol


Authors: S. A. Fulling and G. Kennedy
Journal: Trans. Amer. Math. Soc. 310 (1988), 583-617
MSC: Primary 58G15; Secondary 35J30, 35S05
DOI: https://doi.org/10.1090/S0002-9947-1988-0973171-5
MathSciNet review: 973171
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Nonrecursive, explicit expressions are obtained for the term of arbitrary order in the asymptotic expansion of the intrinsic symbol of a resolvent parametrix of an elliptic linear differential operator, of arbitrary order and algebraic structure, which acts on sections of a vector bundle over a manifold. Results for the conventional symbol are included as a special case.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, R. Bott, and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279-330. MR 0650828 (58:31287)
  • [2] R. Balian and C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain. I, Ann. Physics 60 (1970), 401-447; erratum ibid. 84 (1974), 559. MR 0270008 (42:4901)
  • [3] -, Distribution of eigenfrequencies for the wave equation in a finite domain. II, Ann. Physics 64 (1971), 271-307; erratum ibid. 84 (1974), 559-562.
  • [4] H. P. Baltes and E. R. Hilf, Spectra of finite systems, Bibliographisches Institut, Mannheim, 1976. MR 0435624 (55:8582)
  • [5] N. H. Barth and S. M. Christensen, Quantizing fourth order gravity theories: the functional integral, Phys. Rev. D 28 (1983), 1876-1893. MR 720986 (84j:83032)
  • [6] J. Bokobza-Haggiag, Opérateurs pseudo-différentiels sur une variété différentiable, Ann. Inst. Fourier (Grenoble) 19 (1969), 125-177. MR 0310708 (46:9806)
  • [7] T. S. Bunch and L. Parker, Feynman propagator in curved spacetime: a momentum-space representation, Phys. Rev. D 20 (1979), 2499-2510.
  • [8] C. Callias and C. H. Taubes, Functional determinants in Euclidean Yang-Mills theory, Comm. Math. Phys. 77 (1980), 229-250. MR 594302 (82d:81074)
  • [9] S. M. Christensen, Vacuum expectation value of the stress tensor in an arbitrary curved background: the covariant point-separation method, Phys. Rev. D 14 (1976), 2490-2501. MR 0475615 (57:15208)
  • [10] -, Regularization, renormalization, and covariant geodesic point-separation, Phys. Rev. D 17 (1978), 946-963. MR 0475489 (57:15093)
  • [11] -, Quantizing fourth order gravity theories, Quantum Structure of Space and Time (M. J. Duff and C. J. Isham, eds.), Cambridge Univ. Press, Cambridge, 1982, pp. 71-86. MR 694854
  • [12] C. Clark, The asymptotic distribution of eigenvalues and eigenfunctions for elliptic boundary value problems, SIAM Rev. 9 (1967), 627-646. MR 0510064 (58:23164)
  • [13] E. Cremmer and J. Scherk, Dual models in four dimensions with internal symmetries, Nuclear Phys. B 103 (1976), 399-425.
  • [14] B. S. DeWitt, Dynamical theory of groups and fields, Gordon and Breach, New York, 1965. MR 0187652 (32:5102)
  • [15] H. Donnelly, Symmetric Einstein spaces and spectral geometry, Indiana Univ. Math. J. 24 (1974), 603-606. MR 0413011 (54:1132)
  • [16] L. Drager, On the intrinsic symbol calculus for pseudo-differential operators on manifolds, Ph.D. Dissertation, Brandeis University, 1978.
  • [17] E. Getzler, Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem, Comm. Math. Phys. 92 (1983), 163-178. MR 728863 (86a:58104)
  • [18] P. B. Gilkey, The spectral geometry of a Riemannian manifold, J. Differential Geom. 10 (1975), 601-618. MR 0400315 (53:4150)
  • [19] -, The index theorem and the heat equation, Publish or Perish, Boston, 1974. MR 0458504 (56:16704)
  • [20] -, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Publish or Perish, Wilmington, 1984. MR 783634 (86j:58144)
  • [21] P. B. Gilkey and L. Smith, The eta invariant for a class of elliptic boundary value problems, Comm. Pure Appl. Math. 36 (1983), 85-132. MR 680084 (84h:58141)
  • [22] P. Greiner, An asymptotic expansion for the heat equation, Arch. Rational Mech. Anal. 41 (1971), 163 218. MR 0331441 (48:9774)
  • [23] J. Hadamard, Lectures on Cauchy's problem in linear differential equations, Dover, New York, 1952.
  • [24] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978. MR 514561 (80k:53081)
  • [25] L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218. MR 0609014 (58:29418)
  • [26] M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), 1-23. MR 0201237 (34:1121)
  • [27] G. Kennedy, The intrinsic symbolic calculus of pseudodifferential operators on manifolds (in preparation).
  • [28] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. 1, Wiley, New York, 1963.
  • [29] H. Kumano-Go, Pseudo-differential operators, M.I.T. Press, Cambridge, Mass., 1982.
  • [30] J. F. Luciani, Space-time geometry and symmetry breaking, Nuclear Phys. B 135 (1978), 111-130. MR 0503392 (58:20157)
  • [31] S. Minakshisundaram, Eigenfunctions on Riemannian manifolds, J. Indian Math. Soc. 17 (1953), 159-165. MR 0061750 (15:877d)
  • [32] S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242-256. MR 0031145 (11:108b)
  • [33] T. A. Osborn and R. Wong, Schrödinger spectral kernels: high order asymptotic expansions, J. Math. Phys. 24 (1983), 1487-1501. MR 708669 (85a:81113)
  • [34] L. Parker, Aspects of quantum field theory in curved spacetime: effective action and energy-momentum tensor, Recent Developments in Gravitation: Cargèse 1978 (M. Levy and S. Deser, eds.), Plenum, New York, 1979, pp. 219-273.
  • [35] B. E. Petersen, Introduction to the Fourier transform and pseudo-differential operators, Pitman, Boston, 1983.
  • [36] T. Sakai, On eigen-values of Laplacian and curvature of Riemannian manifold, Tôhoku Math. J. 23 (1971), 589-603. MR 0303465 (46:2602)
  • [37] R. Schrader and M. E. Taylor, Small $ \hbar $ asymptotics for quantum partition functions associated to Yang-Mills potentials, Comm. Math. Phys. 92 (1984), 555-594. MR 736411 (86f:81134)
  • [38] J. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951), 664-679. MR 0041727 (12:889c)
  • [39] R. T. Seeley, Complex powers of an elliptic operator, Singular Integrals, Proc. Sympos. Pure Math., Vol. 10, Amer. Math. Soc., Providence, R. I., 1967, pp. 288-307. MR 0237943 (38:6220)
  • [40] L. Smith, The asymptotics of the heat equation for a boundary value problem, Invent. Math. 63 (1981), 467-493. MR 620680 (82m:35117)
  • [41] M. E. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, 1981. MR 618463 (82i:35172)
  • [42] F. Treves, Introduction to pseudodifferential and Fourier integral operators, Vol. 1, Plenum, New York, 1980. MR 597144 (82i:35173)
  • [43] R. M. Wald, The back reaction effect in particle creation in curved spacetime, Comm. Math. Phys. 54 (1977), 1-19. MR 0441196 (55:14060)
  • [44] -, On the trace anomaly of a conformally invariant quantum field in curved spacetime, Phys. Rev. D 17 (1978), 1477-1484.
  • [45] -, On the Euclidean approach to quantum field theory in curved spacetime, Comm. Math. Phys. 70 (1979), 221-242. MR 554493 (83c:81076)
  • [46] H. Widom, Families of pseudodifferential operators, Topics in Functional Analysis (I. Gohberg and M. Kac, eds.), Academic Press, New York, 1978, pp. 345-395. MR 538027 (81c:58062)
  • [47] -, A complete symbolic calculus for pseudodifferential operators, Bull. Sci. Math. 104 (1980), 19-63. MR 560744 (81m:58078)
  • [48] -, Asymptotic expansions for pseudodifferential operators on bounded domains, Lecture Notes in Math., Vol. 1152, Springer-Verlag, Berlin, 1985. MR 811855 (87d:35156)
  • [49] S. F. J. Wilk, Y. Fujiwara, and T. A. Osborn, $ N$-body Green's functions and their semi-classical expansion, Phys. Rev. A 24 (1981), 2187-2202. MR 631465 (83a:81018)
  • [50] E. Witten, Search for a realistic Kaluza-Klein theory, Nuclear Phys. B 186 (1981), 412-428. MR 624244 (82j:83062)
  • [51] S. A. Fulling, The analytic approach to recursion relations, J. Symbolic Comput. (in press).
  • [52] A. Ya. Rodionov and A. Yu. Taranov, Computation of covariant derivatives of the geodetic interval with coincident arguments, Classical Quantum Gravity 4 (1987), 1767-1775. MR 911606 (89a:53088)
  • [53] R. Schimming, Lineare Differentialoperatoren zweiter Ordnung mit metrischem Hauptteil und die Methode der Koinzidenzwerte in der Riemannschen Geometrie, Beitr. Anal. 15 (1981), 77-91. MR 614779 (82h:58051)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58G15, 35J30, 35S05

Retrieve articles in all journals with MSC: 58G15, 35J30, 35S05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0973171-5
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society