Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generalizations of Cauchy's summation theorem for Schur functions


Authors: G. E. Andrews, I. P. Goulden and D. M. Jackson
Journal: Trans. Amer. Math. Soc. 310 (1988), 805-820
MSC: Primary 05A19; Secondary 05B15
DOI: https://doi.org/10.1090/S0002-9947-1988-0973178-8
MathSciNet review: 973178
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Cauchy's summation theorem for Schur functions is generalized, and a number of related results are given. The result is applied to a combinatorial problem involving products of pairs of permuations, by appeal to properties of the group algebra of the symmetric group.


References [Enhancements On Off] (What's this?)

  • [1] E. Bannai and T. Ito, Algebraic combinatorics I, Association schemes. Benjamin/Cummings, Menlo Park, Calif., 1984. MR 882540 (87m:05001)
  • [2] P. Diaconis, Group theory in statistics [interim title for a book].
  • [3] I. M. Gessel, Counting $ 3$-lined Latin rectangles, Lecture Notes in Math., vol. 1234, Springer, 1985, pp. 106 111. MR 927761 (89b:05012)
  • [4] I. P. Goulden and D. M. Jackson, Combinatorial enumeration, Wiley, New York, 1983. MR 702512 (84m:05002)
  • [5] D. M. Jackson, Counting cycles in permutations by group characters, with an application to a topological problem, Trans. Amer. Math. Soc. 299 (1987), 785 801. MR 869231 (88c:05011)
  • [6] I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979. MR 553598 (84g:05003)
  • [7] G.-C. Rota, The number of partitions of a set, Amer. Math. Monthly 71 (1964), 498 504. MR 0161805 (28:5009)
  • [8] B. E. Sagan (private communication).
  • [9] C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13 (1961), 179-191. MR 0121305 (22:12047)
  • [10] C. W. Borchardt, Bestimmung der symmetrischen Verbindungen Vermittelst ihrer erzeugenden Funktion, Montash. Akad. Wiss. Berlin, 1855, pp. 165-171.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 05A19, 05B15

Retrieve articles in all journals with MSC: 05A19, 05B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1988-0973178-8
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society