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CONTINUOUS COHOMOLOGY AND REAL HOMOTOPY TYPE 

EDGAR H. BROWN, JR. AND ROBERT H. SZCZARBA 

ABSTRACT. Various aspects of homotopy theory in the category of simplicial 
spaces are developed. Topics covered include continuous cohomology, continu-
ous de Rham cohomology, the Kan extension condition, the homotopy relation, 
fib rations, the Serre spectral sequence, real homotopy type and its relation to 
graded commutative differential algebras over the reals. 

1. INTRODUCTION 

In this paper we investigate various aspects of homotopy theory in the cat-
egory of simplicial spaces, the topics covered being continuous cohomology, 
continuous de Rham cohomology, the Kan extension condition, the homotopy 
relation, fibrations, the Serre spectral sequence, real homotopy type and its re-
lation to graded commutative differential algebras over the reals. The paper is 
organized around stating and proving results which, roughly speaking, estab-
lish an equivalence between the category of simplicial spaces localized at the 
reals and the homotopy category of differential graded commutative topological 
algebras over the reals. The choice of categories and the formulation of defi-
nitions in these categories has been guided by our aim of applying homotopy 
theory to the spaces Blq arising in the study of foliations [8] and to secondary 
characteristic classes of foliations. 

In the next section, we state our results and, at the end of the section, give 
various examples of simplicial spaces occurring in nature. 

We are pleased to acknowledge several very helpful conversations with 
William Dwyer and Dan Kan during the early stages of this work. We are 
also indebted to Stephen Semmes for assistance with questions relating to lin-
ear topological vector spaces. 

2. STATEMENT OF RESULTS 

In this section we introduce our main definitions and notation and state our 
principal results. 

For a category '?i', fl'?i' will denote the category of simplicial '?i' 's; Y de-
notes the category of sets and hence flY is the category of simplicial sets; !:T 
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denotes the category of compactly generated, Hausdorff topological spaces ([21], 
we discuss topologies in §4). If A, B are objects in ~, (A, B) denotes the set 
of morphisms from A to B. For X, Y E aY, we make (X, Y) an object 
in !T by viewing it as a subspace of D(Xq , Yq) where the product topology 
and the function space topology on (Xq , Yq) are in the sense of products and 
function spaces in !T (see §4). 

If X E aY and G is a topological abelian group, we define the continuous 
cohomology groups of X with coefficients in G by 

Hq(X;G) = Hq(C*(X;G) ,6), 

where C q (X; G) is the set of all continuous u: Xq -+ G satisfying uSj = 0, 
0:::; i < q, and 

q+' 
(6u)(x) = 2) -l)ju(ajx). 

j=O 
Here a j and Sj are the face and degeneracy mappings of X. If G is a 
topological ring, we define cup products in C* (X; G) in the usual way; for 
u E CP(X;G), v E Cq(X;G), uv E Cp+q(X;G) is given by 

(uv)(x) = u(a:+,x)v(at x) 

for x E X p+q' This multiplication defines a multiplication in H* (X; G). In 
particular, if R denotes the real numbers, then H* (X) = H* (X; R) is a graded 
commutative algebra. (See §3.) 

Note that H q (X) is a topological linear space (not necessarily Hausdorff) 
with topology coming from Xq • If X is a simplicial space with the discrete 
topology (that is, a simplicial set), then H* (X) is the ordinary, real cohomology 
ring of X. 

Remark. Many authors have defined notions of continuous cohomology in vari-
ous contexts. (See Mostow [16, pp. vi, 9-10] for a discussion of some of these.) 
In particular, Mostow [16] considers continuous cohomology theories on a cat-
egory whose objects are continuous mappings i: Y' -+ Y of topological spaces. 
His theories satisfy four axioms and, in some cases, are characterized by these 
axioms. The relation between Mostow's continuous cohomology and ours can 
be described as follows. Let X be a simplicial space and let XO denote X in 
the discrete topology. If T* is any continuous cohomology theory in the sense 
of Mostow and if each Xq is a paracompact, then 

T* (11Xo II -+ IIXII) ~ H* (X) , 

where 1111 is the fat (or unnormalized) geometric realization functor (see [19] 
or [16, p. 68]) and IIXoll -+ II XII is induced by the natural mapping XO -+ X. 
(See Corollary 7.5 of [16].) 

Let d[q] be the simplicial standard q-simplex, that is, all tuples (io' i, ' ... , 
ip) where 0:::; io:::; i, :::; ... :::; ip :::; q. Let e j : L\[q -1] -+ d[q] and d j : d[q+ 1] 
-+ d[q] be the usual face inclusions and degeneracy projections. We form a 
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simplicial Eilenberg-Mac Lane space, K(G, n) E t:..Y , in the usual way, namely 

K(G,n)q = Zn(i1[q];G) , 

where Zn denotes normalized cocycles topologized via the topology on G, 
ai = e; and Si = <. Note that K(G, n) is actually a simplicial topological 
abelian group. 

We now define a continuous version of the Kan condition. Let X be a 
simplicial space and I = {ii' ... ,il }, 0 :=:; i l < i2 < ... < i l :=:; q, 1 :=:; I :=:; 
q. Let X(q ,I) be the subspace of the I-fold product (Xq_I)1 of I-tuples 
(XI' , ... ,x,) such that a,x = a IX for i, i E I, i < i, and let 

I I, I j j- I 

Pq,/: Xq --+ X(q ,I) 

be given by Pq ,/(x) = (ail X , •.• ,ai,x). If k ~ I, define skI = {jl ' ... ,il }, 
where 

. { im for im < k , 
1m = im + 1 for im > k. 

Definition 2.1. A simplicial space X is Kan if, for each q 2: 0 and I as above, 
there are mappings 

satisfying 
(i) Aq,/ are continuous, 
(ii) Pq ,/Aq,/ = identity, 
(iii) if k or k + 1 E I, then, for all X E Xq_ l , Aq,/Pq,/(SkX) = SkX, 
(iv) if k ,k + 1 ~ I and hence I = SkI' , then 

Aq ,IPq ,/(SkX) = SkAq_1 ,/'Pq_ 1 ,/,(x). 

(Conditions (iii) and (iv) assert that Aq+I(X , ... ,x) is degenerate if the XI' 
II I, j 

are such as to make this possible in which case the A'S commute with the 
degeneracy operators.) 
Remark. It follows from Lemma 6.8 of [13] that our continuous version of the 
Kan condition reduces to the usual version when X is a simplicial set. The 
definition was chosen so that if X is Kan, then the simplicial function space 
7(Y ,X) is Kan for any simplicial space Y; see Theorem 2.17. 

In §6, we show that if Y E t:..Y is Kan, homotopy is an equivalence relation 
among maps from X to Y for any X E t:..Y. (A homotopy in t:..Y is a map 
F: X x i1[ 1] ~ Y.) If [X, Y] denotes the set of homotopy classes of maps 
from X to Y, the usual arguments yield: 

Theorem 2.2. The simplicial space K(G, n) is Kan and there is a natural iso-
morphism 

H n (X ; G) ~ [X , K ( G , n )] , 
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where the group structure on [X, K( G, n)] is defined using the group structure 
on K(G,n). 

The proof of this result is given in §3. The following result makes possible 
our analysis of real homotopy types. 

Theorem 2.3. According as n is even or odd, H* (K (R , n) ; R) is a polynomial 
or an exterior algebra on one generator in dimension n. 

Our original proof of this result, outlined in [5], made use of a version of the 
Van Est theorem for simplicial Lie groups. Our present proof, given in §9, uses 
a continuous cohomology analogue of the Serre spectral sequence of a twisted 
cartesian product of simplicial spaces and the Van Est theorem for n = 1 . 

We next develop a de Rham approach to H* (X) . Let .sf denote the category 
of differential graded, topological algebras over R with unit which satisfy the 
following conditions: If A E.sf and A = E A P , then A P = 0, p < 0, each A P 

is a locally convex Hausdorff topological vector space over R, d: AP -+ AP+ I , 

and multiplication A P x A q -+ A P+q is continuous. We denote by .sf~ the full 
subcategory of .sf consisting of those algebras which are commutative in the 
graded sense: ab = (-1 )pq ba , where a E A P , b E Aq . 

Following the techniques developed in [3], a central object for our study is 
the algebra of differential forms on the standard simplex: 

/1q = {(to,t l , ••• ,tq) ERq+l : Lt; = 1 ,t; 2: a}. 
There are several possible choices for these forms, all giving the same theo-
rems, namely, differential forms with polynomial coefficients or with COO func-
tions as coefficients. We emphasize COO functions. Let n; be the space of 
COO differential p forms on /1q with the COO topology. The face inclusions 
and degeneracy projections, e;: /1q-1 -+ /1q, d;: /1q+1 -+ /1q induce face and 
degeneracy maps 8;: n; -+ n;_1 and s;: n; -+ n;+I' Then, for fixed p, 
nP = {n; ,8; ,s;} is an !1!T and, for fixed q, nq = Ep n; is in .sf~ (with 
differential the exterior differential). Combining these two structures, we obtain 
n = {nq , 8; ,s;} in !1.s¥' ~. (Note that n; E.'T because it is metrizable [21].) 

Another useful gadget of this sort is the group of simplicial cochains on the 
standard q-simplex. For any topological abelian group, let C: (G) be defined 
by 

C;(G) = C P(/1[q]: G), 

the group of normalized cochains on /1[q] with values in G topologized in the 
usual way. Then, just as above, we obtain CP(G) E !1!T, Cq(G) E.sf (using 
cup product as multiplication), and C( G) E!1.s¥' . 

If X E!1!T ,let (X, np ) be the set of simplicial mappings, (X, QP) topol-
ogized as a subset of the cartesian product D(Xq , n;), where (Xq , n;) has 
the compact open topology. The linear structure on nP makes (X, QP) into 
a locally convex Hausdorff space. (We have not passed to compactly gener-
ated topologies on (Xq' n:) because this might destroy the local convexity.) 
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Let J4f(X) E J4f75 be defined by J4fp(X) = (X, OP), the space of contin-
uous simplicial mappings from X to Op. Multiplication of forms defines 
J4f(X) = EJ4f P(X) as an object in J4f75. 

An element W E J4fp(X) assigns to each q-simplex x E Xq a differential 
p-form on !!t.q and these forms fit together along faces, e; w(x) = W(oiX) , as 
well as respecting degeneracy. We think of J4f (X) E J4f75 as the algebra of 
differential forms on X. 

In a completely analogous fashion we set 
Cq(X; G) = (X, Cq(G)) 

and obtain C(X; G) E J4f. It is easy to see that this definition of C(X; G) 
agrees with our earlier definition. (See Lemma 3.5.) 

In §5 we define a simplicial map '¥: 0 -+ C(R) and composition with '¥ 
gives a map 

'¥: J4f(X) ~ C*(X) = C*(X;R). 
This map is the usual map which, for WE J4fp(X) and x E Xp ' is given by 

,¥(w)(x) = ( w(x). 1M 
We define the continuous de Rham cohomology of X by HdR (X) = Hq (J4f (X)) . 

In §5 we prove 

Theorem 2.4. The map '¥ induces a ring isomorphism '¥: H;R(X) -+ H*(X). 

We next describe a simplicial space!!t.(A) for an algebra A E J4f75 which 
has the property that if A is free, nilpotent, and of finite type (see definition 
below), then 

HJA) ~ H* (J4f (!!t.(A))). 
If A, B E J4f75 , we form A 181 B E J4f75 algebraically in the usual way and 

with the projective topology on A P 181 B q ([23]; the projective topology is the 
strongest topology making Ap®Bq into a locally convex topological vector space 
such that Ap x Bq ~ Ap 181 Bq is continuous). 

If A, B E J4f we topologize (A, B) so it is in !T as follows: For a topological 
space U let k( U) be U with its compactly generated topology (see §4). For U 
and V in !T their !T product is k of their cartesian product and (U, V) is 
topologized by k of the compact open topology. Then, working in !T, (A, B) 
is topologized as a subspace of rI (A p ,B p) • 

In general, for r E !!,.J4f, X E !!t.!T and A E J4f , we form r 181 A E !!,.J4f , 
(X, r) E J4f and (A, n E!!t.!T by 

(r®A)q=rq®A, (X,r)P=(X,rP), (A,nq=(A,rq). 

For A E J4f75 we define its real simplicialform by !!t.(A) = (A, 0). For example, 
if A = R[x] is the polynomial or exterior algebra on a generator x in dimension 
n with dx = 0, then 

!!t.(R[xDq = {w E 0;: dw = O} 
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which, as we will see in §9, is a differential form model of K(R, n). If A = 

R[x, y], dx = 0, and dy = xk , then 

{ non nokn - I d d kn ~(A)q= (U,V)E~{.qX~{.q : u=O, v=u} 

is a two-stage Postnikov system. 
Note that ~: .s;f '?!' --> A9"" and .s;f: A9"" --> .s;f '?!' are contravariant functors. 
We next define the notion of an algebra A E.s;f,?!, being FNF, that is free, 

nilpotent, and of finite type. If A E .s;f,?!" a E An+1 and da = 0, we define 
A[x] = Aa[x] E.s;f,?!, to be A0R[x] as a graded topological algebra, dimx = n, 
and we define the differential by 

for bE A P • 

Definition 2.5. An algebra A E .s;f '?!' is FNF (free, nilpotent, and of finite type) 
if it is isomorphic to U An where Ao = R and An = An_l[x]. We also require 
that for any m, there is an n such that Am = A; . We say that A is minimal 
if, in addition, da is decomposable for all a EA. An algebra B E.s;f,?!, is NF 
(R-nilpotent and of finite type) if there is an FNF algebra A and f: A --> B 
inducing an isomorphism on homology. 

The proof of the next result is straightforward and left to the reader (see, for 
example, [3, Proposition 7.4]). 

Theorem 2.6. If A E.s;f,?!, is R-nilpotent and of finite type and if Ho(A) ~ R, 
then there is a minimal algebra M and f: M --> A such that f.: H.(M) --> 

H.(A) is an isomorphism. If f': M' --> A is another such pair, there is an 
isomorphism h: M --> M' such that!, hand f are homotopic (see below for 
the definition of homotopy in .s;f). If A E.s;f,?!, is of finite type, Ho(A) ~ R, 
and HI (A) ~ 0, then A is R-nilpotent. 

For any A E.s;f,?!" we have a map i: A --> .s;f(~(A)) defined by i(a)(u) = 
u(a). In §4 we prove 

Lemma 2.7. Iffor each p, A P has compactly generated topology (for example, 
if it is metrizable) then i: A --> .s;f (~(A)) is continuous. 

In §9 we use the Serre spectral sequence for continuous cohomology to prove 

Proposition 2.8. If A is FNF, then i.: Hq(A) --> Hq(.s;f(~(A))) is an isomor-
phism for all q ~ O. 

For any simplicial space X, define j: X --> ~ (X) by the formula 

(2.9) j(x)(w) = w(x) 



CONTINUOUS COHOMOLOGY AND REAL HOMOTOPY TYPE 63 

for x EX, WE sf (X) = (X, Q). In §4 we prove 

Lemma 2.10. The mapping j: X ---- !l.s:1' (X) defined above is continuous. 

Theorem 2.11. If sf(X) is connected, R-nilpotent and offinite type, there is a 
minimal algebra M and f: X ---- .1( M) such that 

f*: H*(.1(M)) ---- H*(X) 

is an isomorphism. Furthermore, if M' and !' are another such pair, there is 
an isomorphism h: M ---- M' such that f.1( h) and f' are homotopic. 

Since the proof is short we include it here. Suppose X is R-nilpotent and of 
finite type. By Theorem 2.6 there is a minimal algebra M and a map g: M ----
sf(X) such that g induces an isomorphism on H*. Let f: X ---- .1(M) be the 
composite: 

X 1. .1(sf(X)) li..\.!) .1(M). 
By Theorem 2.4 it is sufficient to show that sf (I): sf (.1(M)) ---- sf (X) induces 
an isomorphism on homology. Consider the commutative diagram 

sf .1(M) ~ sf .1 (sf (X)) ~ sf(X) 

M --L... sf(X) 
One easily checks that sf(Jx)i.9l(X) is the identity. By Proposition 2.8, iM in-
duces an isomorphism in continuous cohomology as does g by construction. 
Hence sf (J x.1(g)) = sf (I) induces an isomorphism in continuous cohomol-
ogy. The last part of Theorem 2.11 follows from Theorem 2.6 and the fact that 
.1 preserves homotopy (see Theorem 2.19 below). 

The relation between the homotopy types of X and .1(M) in !l!T and the 
relation between their associated simplicial sets (forgetting the topology) is at 
present unclear to the authors. For example, it is probably true that 1.1(M)1 is 
contractible. We next give very stringent hypotheses on X which will ensure 
that X and .1(M) are related as one would most optimistically expect. (See 
Theorem 2.13.) 

Suppose X E!l!T is Kan, Xo E X is a base point and lln(X ,xo) denotes 
the usual homotopy groups of X as a simplicial set, with the topology coming 
from the topology on Xn; " n(X, xo) is a quotient of 

{x E Xn: 8ix = xo ' 0 ~ i ~ n} 

with the quotient topology. Let 

lln(X ,xo) = Homcont(lln(X ,xo) ,R). 

Suppose 1l is a topological abelian group, X E!l!T, u E C n+1(X, 1l), and 
Ju = o. Let p: Eu ---- X be the fibration (see §6) 

E(u)q = {(x, v) E Xq x en (.1[q] ; G)It;U = Jv}, 
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where p(x ,v) = x, and tx: ~[q] -+ X is the unique map such that tx(O, ... ,q) 
=x. 
Definition 2.12. The simplicial space X has a simple Postnikov system if it 
has the homotopy type of X' in A9T and X' = I~Xn' Xn = E(un) , un E 

Cn+1(Xn_l ;7rn), where 7rn is a topological abelian group and Xo = pt. If in 
addition, each 7rn is locally Euclidean we say that X is of/mite type. Note that 
7rn(X') ~ 7rn as topological groups. 

In §10 we prove 

Theorem 2.13. If X has a simple Postnikov system and is of finite type, and if 
f: X ~ ~(M) is as in Theorem 2.11, then 

* i i f : 7r (~(M)) ~ 7r (X). 

Furthermore, 7ri(~(M)) ~ (M/~f)i where if c M is the ideal of decomposable 
elements. 
Remark. If X E A9 is simple and of finite type, then, viewed as an object in 
t::.:T with the discrete topology, it has a simple Postnikov system and is of finite 
type. 

We next investigate how maps behave under the functor ~. Suppose A, BE 
.s;(~. Following [3], we define a function space .9T(A, B) E t::.:T by 

.9T(A, B) = (A, Q @B). 

Thus a q-simplex in .9T(A, B) is a DGA map A -+ Qq @ b and the face and 
degeneracy mappings are defined in terms of those for Q. Note that ~(A) = 
.9T(A, R). As usual, we define .9T(X, Y) E t::.:T , for X, Y E t::.:T by 

.9T(X, Y)q = (~[q] x X, Y). 

Let composition 
(2.14 ) &: .9T(A, B) x .9T(B ,C) -+ .9T(A, C) 

be defined by 

(A, Qq @B) x (B ,Dq @ C) i~b (A, Qq @B) x (Qq @B ,Qq @ C) ~ (A, Qq @ C) , 

where &0 is the usual composition and b(u)(w@ b) = (w @ l)(u(b)). 
Taking C = R in (2.14) and taking the adjoint of &, we obtain a map 

(2.15) ~: .9T(A ,B) -+ .9T(~(B) ,~(A)) 

which extends the map ~: (A, B) -+ (~(B) ,~(A)) . 
Let y:.9T(A,.s;((X))-+.9T(X,~(A)) be the adjoint of 

.9T(A ,.s;((X)) x X l~ .9T(A ,.s;((X)) x .9T(.s;((X) , R) ~ .9T(A, R). 

In Lemma 4.4 we prove that ~ and yare continuous for all q when Bq is 
finite dimensional. The proof of these results uses the fact that we are working 
with compactly generated spaces. One of our main results is that ~ and yare 
weak equivalences when A and Bare FNF and X is connected. 
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Definition 2.16. If X , Y in ~ are Kan, then f: X -t Y is a weak equivalence 
if for all base points Xo C X and all n ~ 0, f.: 1tn(X ,xo) -t 1tn(Y ,f(xo)) is 
a group isomorphism or set isomorphism when n = O. (f. is automatically 
continuous but need not be a homeomorphism.) 

Remark. We note that a weak equivalence f: X -t Y need not induce iso-
morphisms on continuous cohomology. For example, the "identity" mapping 
from K(Ro , n) onto K(R, n) is certainly a weak equivalence but is not a 
continuous-cohomology isomorphism. However, if X and Y have simple Post-
nikov systems and f: X -t Y is a weak equivalence with the property that each 
f q : 1tq (X ,xo) -t 1tq (Y ,f(xo)) is a homeomorphism, then f can be shown to 
induce isomorphisms continuous cohomology. 

In §6 we prove the following two results: 

Theorem 2.17. If X ,Y E A:T and Y is Kan, then 9f(X, Y) is Kan. 

Theorem 2.18. If A, B E sf~ and A is FNF, then 9f(A, B) and ~(A) are 
Kan. 

The usual arguments and Theorem 2.17 show that homotopy for maps f: X 
-t Y is an equivalence relation when Y is Kan and [X, Y] = 1to(9f(X, Y)). 
For A, B E sf~, define a homotopy to be a map F: A -t 01 ® B. Then 
Theorem 2.18 yields the fact that homotopy is an equivalence relation in sf 
and [A, B] = 1to(9f(A, B)). Since ~ maps function spaces to function spaces 
we have 

Lemma 2.19. The functor ~ induces a map [A, B] -t [~(B), ~(A)] when A is 
FNF. 

In § 7 we prove 

Theorem 2.20. If A and B E sf~ are FNF then 

~: 9f(A ,B) -t 9f(~(B), ~(A)) 

is a weak equivalence. In particular, ~ induces a bijection [A, B] ::::: [~(B) ,~(A)]. 
If, in addition X E A:T is O-connected (1to(X) = pt), then 

}': 9f(A, sf (X)) -t 9f(X ,~(A)) 

is a weak equivalence. If A E sf~ is FNF and B, C, f: B -t C are in sf~ 
with j*: H.(B) ::::: H.(C) , then the induced map 9f(A, B) -t 9f(A, C) is a 
weak equivalence. 

We can recast some of our results into a categorical form as in Quillen [17] as 
follows: Let sf~ be the full subcategory of sf~ consisting of objects which 
are NF. Let ~ be the fulll subcategory of ~ consisting of those X such 
that si (X) is FNF. 
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Definition 2.21. A mapping h: A -+ B in J4f~ is an R-equivalence if h* : H* (A) 
~ H.(B). A mapping f: X -+ Y in ~ is an R-equivalence if j*: H*(Y) ~ 
H*(X) . 

Let ~R and J4f~lR be the categories ~ and J4f~ localized with re-
spect to their R-equivalences [17]. We define a functor D.h : J4f~R -+ ~R as 
follows: For each A E J4f ~ choose fA: MA -+ A , where M is FNF and fA 
is an R-equivalence. Let D.h(A) = D.(MA). By Theorem 2.20, if A is FNF and 
g: B -+ C is an R-equivalence, g induces an isomorphism [A, B] -+ [A, C]. 
Hence, if g: B -+ C is a map, there is a unique map g: MB -+ Me' in ~R (lo-
calizing makes homotopic maps equal) such that feg = gfB . Let D.h(g) = g. 
Then Theorems 2.11 and 2.20 immediately give 

Theorem 2.22. The functor D.h : J4f ~R -+ /)$liOR is an equivalence of categories 
in the sense that D.h is an isomorphism on morphism sets and each object of 
/)$liOR is isomorphic to D.h(M) for some M. 
Remark. A casual reading of Theorem 2.22 might suggest that if A, B E J4f~ 
and f: A -+ B induces an isomorphism on H*, then D.(f): D.(B) -+ D.(A) 
induces an isomorphism on H* . If A and B are not free this may not be true. 
It is true that if f is a homotopy equivalence, i.e. there is a map g: B -+ A 
such that fg and gf are homotopic to the identity, then D.(f) is a homotopy 
equivalence because D. extends to .7(A, B) -+ .7(D.(B) ,D.(A)). 

We remark that if we replace R by Q, smooth forms by rational polynomial 
forms, and simplicial spaces by simplicial sets throughout this paper, then our 
proofs establish a somewhat extended version of the Quillen-Sullivan Rational 
Homotopy Theory [17, 26]. (See Theorems 2.11 and 2.20.) 

Let a: A.5jJ -+ a:T be the functor which assigns to each simplicial set X, 
the simplicial space X with the discrete topology. One may localize with re-
spect to the rationals to form ~Q ' exactly as above and (J induces a functor 
a:~Q-+~R' 

Our next result (proved in § 11) shows that this functor is neither injective 
nor surjective. 

Theorem 2.23. There are simply connected simplicial sets XI and X 2 each of 
finite type such that Xl and X 2 are not isomorphic in ~Q but a(XI) and 
a(X2 ) are isomorphic in ~R' In addition, there is an FNF A E J4f~ such 
that D.(A) is not isomorphic to anything in the image of a. 

We next give a formulation of the main result of [6] in our context. 
If B is a commutative graded algebra of finite type, we view it as being in 

J4f~ with zero differential. Let M(B) be a minimal algebra and y: M(B) -+ B 
a map such that y induces an isomorphism 

H.(M(B)) -+ H*(B) = B. 

Definition 2.24. A simplicial space X E a:T is R-formal if there is a map 
g: X -+ D.(M(H*(X)) inducing an isomorphism in cohomology. 
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Theorem 2.25. If N is a compact nilpotent Kahler manifold, then the total sin-
gular complex Il(N) in the discrete topology is R-formal. Hence, there is a 
minimal algebra M(H*(N)) E s1'C?J and a map g: Il(N) -> Il(M(H*(N))) 
inducing isomorphisms on H* and on n* . 

We conclude this section with some examples of simplicial spaces. 

Example 1. Let W be a topological space and let Il( W) be the simplicial space 
of singular simplices of W with the compact-open topology. Graeme Segal has 
proved (unpublished) that if W is a CW complex, then 

H* (Il( W) ; G) ~ H* (Il( W)t5 ; G) 

for any G. Thus the continuous cohomology of Il( W) is isomorphic to the 
singular cohomology of W. 

Example 2. For any topological Lie group, we have defined K (G, 1) by 
1 K(G, l)q = Z (Il[q], G). 

Equivalently, K( G, 1) is the Bar Construction on G. If G is a Lie group, the 
Van Est theorem [24] expresses H* (K(G, 1)) in terms of cohomology of the Lie 
algebra of G. These results can be extended to the case where G is a simplicial 
Lie group [5]. 

We note that the geometric realization of K( G, 1) is essentially Milnor's 
construction [15] of the classifying space BG of G. (See [18, p. 107].) 

Example 3. The previous example is a special case of the nerve of a topological 
category. Recall that a topological category is a category C?J in which both 
Obj(C?J) and Morph(C?J) are topological spaces and all structure mappings are 
continuous. The nerve of C?J is the simplicial space N(C?J) with N(C?J)o = 
Obj(C?J) and N(C?J)q = all sequences of q-composable morphisms, q> O. The 
face and degeneracy mappings are defined in the usual way. With this definition, 
K( G, 1) is the nerve of the category Ji with one object, Morph(Ji) = G and 
with multiplication as composition. 

Example 4. Let (q -> BGLq be the universal real q-plane bundle. Let B(q) 
be the simplicial set consisting of pairs (T,!T), where T: IlP -> BGL q is 
smooth and !T is a smooth foliation on T* (q transverse to fibres. For fixed 
T, it is easy to define a sensible topology on {(T ,!Tn making B(q) into a 
simplicial space. Then, the geometric realization IB(q)t5 1 is a model for Brq 
and H*(B(q)) is a plausible definition of the continuous cohomology of Brq . 

--- 15 Let B(q) be the fibre of the natural mapping B(q) -> Il(BGLq) , Lq be the 
Lie algebra of COO vector fields on R q in the COO topology, and let C*(Lq) E 
s1'C?J be the algebra of continuous cochains on Lq (continuous skew forms 

on Lq with differential defined by Lie bracket). Then Brq = IB(q)t5l is the 
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classifying space for foliations with trivialized normal bundle. In [11], Haefliger 
shows that B(q) = £l(C*(Lq)) and 

C*(Lq) -> .w'(£l(C*(Lq))) 

gives the characteristic map 

A similar construction can be used to obtain a map 

H*(Lq' Oq) -> H*(Blq)' 

Example 5. Let lq be the topological category with Obj(lq) = R q and mor-
phisms all germs of local diffeomorphisms of R q in the sheaf topology. Then 
the nerve of lq' N(lq) , is a simplicial manifold with each N(lq)k a smooth 
manifold of dimension q which is neither Hausdorff nor paracompact. The 
geometric realization of Nl q as a simplicial space is essentially a Haefliger 
classifying space Blq for lq structures [9, §5]. In fact, Haetliger [8] and 
Thurston [22] have proved that Blq also "classifies" foliations of codimension 
q. 

The continuous cohomology of Nlq is unknown to the authors. Haetliger 
[11] has given a somewhat complicated definition of smooth cohomology in this 
case. 

3. SOME PROPERTIES OF CONTINUOUS COHOMOLOGY 

In this section, we derive some of the elementary properties of the continuous 
cohomology functor and show it to be representable. We also prove that any 
simplicial topological group is Kan. 

By a mapping f: X -> Y between simplicial spaces, we will always mean a 
continuous simplicial mapping, that is a sequence f q: Xq -> Yq , q = 0, 1 .... , 
of continuous mappings which commute with face and degeneracy operators. 
Clearly such a mapping defines a sequence of homomorphisms f q : H q (Y ; G) -> 

H q (X; G) making H q ( ; G) a contravariant functor from the category of sim-
plicial spaces to the category of topological groups. 

Let X and Y be simplicial spaces and f, g: X -> Y mappings. As indi-
cated earlier, a homotopy from f to g is a mapping F: X x £l[ 1] -> Y with 
F(x,sgO) = f(x) , F(x,sgl)=g(x) for xEXq,all q. Here Xx£l[I] is the 
product of simplicial spaces, £l[I] having the discrete topology. As usual, we 
say f is homotopic to g if there is a homotopy from f to g and we write 
fc::::.g. 

In general, the relation f c::::. g is not an equivalence relation. For simplicial 
sets, it is sufficient for Y to satisfy the Kan condition. In our context, we 
need to require that Y satisfy our continuous version of the Kan condition 
(Definition 2.1). 
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Proposition 3.1. Let X and Y be simplicial spaces and assume that Y satisfies 
the continuous Kan condition. Then the relation f:::: g for maps f , g: X -> Y 
is an equivalence relation. 

This result is an immediate consequence of Theorem 6.2 (see Corollary 6.4). 
We show next that continuous cohomology is a homotopy functor. 
Proposition 3.2. Let f, g: X -> Y be homotopic mappings between the simpli-
cial spaces X and Y. Then 

f* = gO: H*(Y;G) -> H*(X;G). 
Proof. Let f: X x ~[1] -> Y be a homotopy from f to g. For each q ;::: 0, 
define continuous mappings hi: Xq -> Yq+1 ' 0 ~ i ~ q, by 

hi(x) = F(six ,Sq·· ·Si+ISi_1 ... So 0" I) , 

where 0"1 = (0,1) is the nondegenerate one simplex in M1]1 . Define 
D: Cq+l(y) -> Cq(X) 

by 
q 

D(u) = I)-l)i uhr 
i=O 

One checks easily that oD + DO = f* - g * . 
In the previous section, we defined a multiplication in C* (X; G) for G a 

topological ring by 
(uv)(x) = u(o:+lx)v(o6 X), 

where u E cP (X; G) ,v E Cq (X; G), and x E Xp+q. An easy computation 
proves that 

o(uv) = (ou)v + (-l)Puov 
so that a multiplication is defined in H* (X ; G). Our next result gives the basic 
properties of this multiplication. 
Proposition 3.3. The multiplication on H* (X; G) defined above is associative, 
graded commutative, and has a unit. Furthermore, if f: X -> Y is a mapping 
of simplicial spaces, then f*: H* (Y ; G) -> H* (X; G) is a homomorphism of 
graded rings. 
Proof. If 1 E CO (X ; G) is the cocycle corresponding to the constant 1 mapping 
Xo -> R, then each of the assertions of Proposition 3.3, except for the commu-
tativity, holds on the cochain level. To prove commutativity, let u E zP (X; G) , 
v E zq(X; G), and define the "cup one" product u ul v E C P+q- 1 (X; G) by 

Then 

p-I 

(u ul v)(x) = I) -1 )(P- j)(q+l) u(Ojq+-11 x)v(060:+~~~ I x). 
j=O 

o((-l)P+quU I v) = uv + (-l) Pq vu. 
(See Steenrod [20, Theorem 5.1].) 
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Let G be a topological abelian group and let In E Hn(K(G, n); G) be the 
class represented by the cocycle In E en(K(G, n); G) defined by In(U) = u(an) , 
where u E K(G, n)n E Zn(Ll[n]; G) and an is the nondegenerate element of 
Ll[n]n' 

Proposition 3.4. For any simplicial space X and n > 0, the assignment I 1-+ 

1* In defines a natural isomorphism Irom [X, K ( G , n )] onto H n (X ; G) . 

Here [X, Y] denotes the set of homotopy classes of mappings from X to 
Y. Note that homotopy is an equivalence relation in this case since K( G , n) 
is a simplicial topological group (see Proposition 3.8 below). 

Prool. Recall that in §2 we defined a simplicial abelian group en (G) by en (G) q 
= en (Ll[q] ; G). For any simplicial space X, let 11-+ j be the homomorphism 
from (X, en(G)) into en(X; G) defined by j(x) = In(x)(an) , where an = 
(0, I , ... ,n) E Ll[n]n . Proposition 3.4 is an easy consequence of the following 
two lemmas. 

Lemma 3.5. The mapping I 1-+ j is an isomorphism and the diagram 

(X, en(G)) ~ (X, en+I(G)) 

(3.6) 1 1 
en(X;G) ~ en+I(X;G) 

is commutative (where J * is induced by J: en (G) --t e n+ I (G)) . 

Proof. Note that, for I E (X, en(G)) , 

Iq(x)(io' ... ,in) = Iq(x)(ejan) = (8j l q(x))(an) = In(8j x)(an) , 

where J = U1 ' ••• ,jq-n) is the complement to (io' ... ,in) in {O, 1 , ... ,q}. 
In fact, given u: Xn --t G, if we define Iq: Xq --t en (G)q by 

Iq(x)(io' ... ,in) = u(8j x) , 

then 1= {Iq} is a simplicial mapping with j = u. It follows that 11-+ j is 
bijective. The proof that diagram (3.6) is commutative is straightforward. 

Lemma 3.7. Let I and g be elements 01 (X , en ( G)). Then I :,; g il and only 
if j-g=Jh lor some hEen-I(X;G). 

Proof. We can assume that g = O. If F: X x Ll[ 1] --t en (G) is a homotopy 
between I and the zero mapping, define hi: X q --t en ( G) q+ I as in the proof 
of Proposition 3.2. Let h E en-I (X; G) be defined by 

n 
h(x) = 2) _l)i hi(x)(aJ. 

i=O 

Then Jh = I. 
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Conversely, if j = t5h , we define H: Xn x L1[l]n ---t G by 

H(x ,sn_1 .. 'Sj+ISj_1 .. ,soO') = 0 if 0::::; j < n - 1, 

H(x ,sn-2" ·soO') = (-l)nh(onx) if j = n - 1, 

H(x,sn_I···so1) =0, 
H(x ,sn_1 ... soO) = f(x). 
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Then H(x, s;O) = f(x) and H(x, s; 1) = O. It now follows from Lemma 3.5 
that there is a unique simplicial mapping F: X x L1[ 1] ---> en (G) with F = H . 
It follows (again using Lemma 3.5) that F is a homotopy between f and the 
zero mapping and Lemma 3.7 is proved. 

This completes the proof of Proposition 3.4. 
We conclude this section with a proof of the fact that a simplicial topological 

group satisfies the Kan condition. 

Theorem 3.8. Let G be a simplicial topological group. Then G is Kan. 

Proof. Let I = (i l , ... ,il ), g/ = (g , ... ,g), g E G I with og 
/1 // /J q- / ] 

OJ_I gi' i < j, i, j E I. We need to define Aq,J (g/) E Gq satisfying the 
conditions of Definition 2.1. Let a be the largest integer with a ::::; q and 
a ¢. I . Then, either il < a = q or 

1= {ii' ... ,it' a + 1 ,a + 2, ... ,q}. 

(Set t = a if I = (a + 1 ,a + 2, ... ,q).) Define PI ' ... ,PI E Gq inductively 
by 

PI = s· g. , 
/1 /1 

where r = ij' e = 0 if i j < a and r = q - j + t + 1, e = 1 for j = 
t + 1 , t + 2, ... ,I. A straightforward computation now shows that the Pj 

satisfy the following: 

(i) 0ikPj = gik for k ::::; j if i j < a and for k ::::; t or k 2: q - j + t + 1 if 
j> t, 

(ii) if gi = ohg for i E I and some g EGg_I and if k or k + 1 is in I, 
then 

i j < k, for some h j E Gq _ 1 ' 

for ij 2: k. 

(iii) if neither k nor k + 1 is in I and 

for i j < k , 

for ij > k + 1 , 
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It follows that Aq.I (g/) = P, satisfies the conditions of Definition 2.1. In 
particular, since P, is obtained from g. , ... ,g using face and degeneracy 

II 1/ 

operators and the group operations in G, it follows that A / is continuous. q, 

4. SOME REMARKS ON TOPOLOGIES 

In this section we recall some results about compactly generated topologies 
and we verify that our various mappings are continuous. More explicitly, we 
prove Lemmas 2.7 and 2.10. We also collect some facts about Frechet spaces 
which will be needed in §9. 

Throughout this section all spaces are Hausdorff. If U and V are topological 
spaces, (U, V) denotes the set of continuous maps of U to V with the com-
pact open topology and UXc V is the cartesian product of Ux V. We use k(U) 
to denote U with its compactly generated topology, namely, V c k( U) is open 
if and only if for each compact set e c U, V n e is open in e with respect to 
the subspace topology on e cU. In the category !T of compactly generated 
spaces, if U, V E!T, one defines U x V = k(U XC V) and (U, V) = k(U , V) . 
It is proved in [21] that in the category !T , the evaluation map U x (U , V) -+ V 
is continuous, the adjoint map (U x V , W) ~ (U , (V , W)) is a homomorphism, 
the product U x V is the categorical product and, for topological spaces Z and 
W, F: Z -+ W induces a continuous map f: k(Z) -+ k(W) if and only if 
fie is continuous for each compact set e c Z. 

Lemma 4.1. For X E !T, the mapping j: X -+ tl.9/ (X) is continuous. 
Proof. Since n: is metrizable, it is in !T and Xq E!T by definition. Hence, 
the evaluation map gives a continuous function 

Xq x k(Xq , n:) -+ n:. 
The map 

j: Xq -+ ~(.w'(X))q c II(k(.w'P(X)) , n:) 
has components Xq -+ (k(.w'p(X)) ,~:) whose adjoints factor as 

Xq x k(.w'P(X)) -4 n: 
n i 

Xq x k(fl (Xr ,n~)) -4 Xq x k(Xr ,n~) 

Lemma 4.2. If A E.w'Cf} and k(AP) = AP for all p ~ 0, thell i: A -+.w'(~(A)) 
is continuous. 
Proof. The mapping 

AP -+.w'P (~(A)) = (~(A) ,nP) c II (~(A)q ,n:) 
has components with adjoint factors as follows: 

AP x ~(A)q -4 nP r: 
-4 A P x (A P ,n:) 
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By hypothesis, k(A P ) = A P so that e is continuous and hence i is continuous. 

Let A, B E ~JiI and define 

i,:A-+A®B, 

by i,(a)=a®l, i2(b)=1®b. 

Lemma 4.3. For any A, B, C E JiI~, the mapping 

i; x i;: (A ® B , C) -+ (A , C) x (B , C) 

is a continuous bijection and a homeomorphism if B P is finite dimensional for 
all p ~ O. 
Proof. The first part of Lemma 4.3 is immediate. To prove the second part of 
the lemma, note that the inverse of i; x i; is given by 

(: (A, C) x (B ,C) -+ (A ® B ,C), 

where 
((u, v)(a ® b) = u(a)v(b). 

For linear spaces U, V , W , let B ( U x V , W) be the space of bilinear mappings 
from U x V to W in the compact open topology. Then, on the component 
level, ( factors as follows: 

(A P , CP) x (Bq , Cq ) -+ B(AP x B q , C p+q } -+ (A P ® B q , CP+Q). 

The first of these mappings is clearly continuous and the second is easily seen 
to be a homeomorphism if Bq is finite dimensional. 

Lemma 4.4. For any A , B ,C in JiI ~ with B P finite dimensional for all p ~ 0, 
the composition mapping 

8: Y(A, B) x Y(B, C) -+ Y(A, C) 

is continuous. Furthermore the composite 

yeA ,JiI(X)) x X ~ yeA ,JiI(X)) x Y(JiI(X) , R) ~ YeA ,R) 

is continuous. 
Proof. Consider the commutative diagram 

where 
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Now, A2 is clearly continuous so using Lemma 4.3, we have AI continuous. 
Thus the composite 

sr(A, B)q x sr(B ,C)q = (A, Q q ® B) x (B ,Qq ® C) 

!IXAt 

(A, Q q ® B) x (Qq ® B) ,Qq ® C) 

! 
sr(A, C)q = (A, Qq ® C) 

is continuous. 
To prove the second assertion, we must verify that 

Xq ---> (s{'(X) ,Q~) ---> (Q~ x S{p(X) ,J1.~+p) 

is continuous when B = s{ (X) and C = R. Under this map, the image of 
x E Xq under w x u E J1.~ x S{p(X) is wu(x) , that is, multiplication and 
evaluation. This is continuous because evaluation is continuous on compact 
spaces. 

We now state some facts about Frechet spaces which will be needed in §9. 
Recall that a Frechet space is a metrizable topological vector space which is 

complete and locally convex. In particular, any Banach space is a Frechet space. 
All Frechet spaces have the following properties: 

(4.5) Any closed subspace of a Frechet space is a Frechet space. 
(4.6) Any quotient of a Frechet space by a closed subspace is a Frechet space. 
These facts are elementary. (See [23, p. 85].) 
(4.7) If X is locally compact and countable at infinity and V is a Frechet 

space, then (X, V), the space of continuous functions from X to V, in the 
compact-open topology, is a Frechet space. 

If KI C K2 C .,. C Kn C ... is a sequence of compact sets with union X, 
then 

IIflln = sup IIf(x)11 
xEKn 

defines a sequence of semi norms on (X, V) which can be used to define a 
metric. Verifying completeness and local convexity is not difficult. 

(4.8) If VI and V2 are Frechet spaces and a: VI ---> V2 is a continuous 
epimorphism, then there is a continuous (not necessarily linear) a: V2 ---> VI 
with aa = identity. 

This result is stated without proof in [2, p. 258] and proved for Banach spaces 
in [1]; see also [14]. The proof given in [14] can be modified in a straightforward 
way to prove (4.8) using the fact that any Frechet space has a neighborhood 
system U I ::,) U2 ::,) ..• of 0 with each Ui convex and with Ui + Ui C Ui+1 • 

5. PROOF OF THE DE RHAM THEOREM 

The proofs of most of the lemmas in this section are trivial and omitted 
or given very briefly. We begin with some preliminaries about the simplicial 
differential graded algebra Q. (Compare Dupont [25].) 
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Let O(dq x I) be the COO differential forms on d q x I. If t denotes the 
coordinate function on I , then WE O(dq x I)P can be written as W = W, (t) + 
w2(t) dt , where w, (t) EO; and w2(t) E 0;-' . Define 

Ji: O(dq x I)P -+ 0:-' 
to be the usual "integration along fibres" mapping, 

Ji(W) = (-I)P-' 10' w2(t)dt. 

A straightforward computation proves the following. 

Lemma 5.1. Let io ' i, : d q -+ d q x I be given by 

io(x) = (x, 0) , 

Then 
dJi + Jid = i; - i~, GiJi = Ji(ei x id)*, Si Ji = Ji(di x id)*. 

Here, d is the exterior differential, Gi , Si are the face and degeneracy map-
pings, and ei : d q-' -+ d q ,di : d q+' -+ d q are the usual face inclusions and 
degeneracy projections defined in §2. 

For the remainder of this section only, we define 0;' = R with Gi = Si = id 
and d: 0;' -+ O~ by d(r) = r, the constant function. Let bi : d q x d' -+ d q 

be given by 
bi(x, t) = tx + (1 - t)vi , 

where Vi is the ith vertex of d q and let Ji i : 0; -+ 0;-' be given by 

p> 0, 
p=O. 

Lemma 5.2. The functions Ji i satisfy the following. 

{ JiB, G.Ji. = I } 
} I II. ,G., r-,_ } 

{ S.Ji , 
11-5.= } I r-, } SjJi i_, ' 

The proof is trivial. 
For I = (io' ... ,i p) , let Ji[ be defined by 

An easy induction proves the following. 

i < j, 
i > j, 
i$.j, 
i > j. 
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Lemma 5.3. For 1= (io' ... ,ip) E ~[q]p' we have 
p 

dfll + (-I)P flld = (-I)P L(-I/ flojl 
j=O 

where 8j denotes the jth face operator in ~[q]. 

If 1= (io' iI' ... ,ip) E ~[p]q' let PI E n: be defined by 
p 

P = "'(-I/t.dt . . ··Jt .. ·dt , I L.....t IJ 10 Ij Ip 
j=O 

where to' . .. ,t q are the barycentric coordinates in ~ q . 

Lemma 5.4. For I E ~[q]p and 0 ~ j ~ p, we have 

8iPI = L PJ ' SiPI = L Pr 
djJ=1 

The proof is straightforward. 
Define mappings 

"': n: --+ C; (R) , rp: C; (R) --+ n: ' 
by 

",(w)(l) = fl/(W) , rp(u) = L p!u(l)PI , y(w) = L p! L fl/(W)Pr 
IEa[qjp p~q IEa[qjp 

Lemma 5.5. The mappings '" , rp , and I' define simplicial mappings which satisfy 
the following: 

",d = J", , rpJ = drp , 
",rp = id, dy + I'd = rp", - id. 

Proof. The fact that '" is simplicial follows immediately from Lemma 5.2. To 
see that rp and I' are simplicial, one uses Lemma 5.2 and 5.4. The equation 
",d = J", is an easy consequence of Lemma 5.4. 

To prove that ",rp = id, we first note that in terms of coordinates, bj : ~q x 
I --+ ~q is given by 

bj{to'''' ,tq ,t)k = ttk +Jjk (l- t), 

where 0jk = 1 if j = k and zero otherwise. Hence 

b*P = tP+1p + tP(l - t)dt .. ·di .. ·dt. 
J I I 10 IJ Ip 

+ ('" 0 .. (_l)p+k+ltP-l p . ) dt L.....t Jlk iJk l 

and k 

{ 
(- 1) P 'f l" k . . P _ -- iJ I 1 lor some ,j = lk' 

flj 1- P k 

o if j i I. 
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Thus f.l JPI = 1/ p! if J = I and is zero if J :j:. I. Therefore, 'lfrp = id. 
We next show that rpJ = drp. For any tuple J of integers between 0 and 

q, J = (jo ,ii' ... ,ip )' let PJ = (signa)PI , where I = (ja(O) , ... ,ia(p)) ' 

ia(o) ~ irr(l) ~ ... ~ ia(o)' Note that the ambiguity of a does not matter 
because PI = 0 if the entries of I are not distinct. Then 

and 

L P[k,/j = L P[k ,J] = L tkdtio ... dtip + dtkPI 
kff./ k 

= (Ltk) dtio ... dt ip + (Ldtk) PI 
1 =dt ... ·dt. = --dPI 

10 Ip P + 1 

drpu = d L p!u(l)PI = (p + 1) L u(I)P[k'/j 
I ,k~I 

= LU(8J)(-I)i(p+ 1)!PJ = rpJu. 

Using Lemma 5.3 and the above argument one can show that dv+vd = rp'lf-id. 
For X E t::.!T , composition with 'If, rp ,and y gives mappings 

'If: S;((X) - C(X, R), rp: C(X;R) - S;((X) , y: S;((X) - S;((X) 

satisfying the identities of Lemma 5.5. Thus we have 

Theorem 5.6. The mapping 'If: s;( (X) - C(X, R) defines a vector space iso-
morphism 

'If.: H;R(X) - H* (X; R). 

The point of the above exposition is to develop the functions 'If, rp , and y 
(which we will use in the next section) rather than to prove Theorem 5.6. We 
now show that 'If. is an algebra isomorphism. Let e' ,s E t::.!T be defined by 

{ 
e'(d[q] ;0;), s ~ -1, r ~ 0, 

e' ,s = OS 1 0 q q' r=- ,s~ , 
o , otherwise 

and 
d . e' ,S _ e'+ I ,S 
I' q q' 

d . e' ,S _ e' ,H I 
2' q q 

by , 
dlu(I) = L(-I/u(8/) , d2u(I) = (-1)' d(u(l)). 

j=O 

Define mappings 

. e"s _ e,-I ,S 
YI' q q , 

. e' ,S _ e' ,s-I 
Y2' q q , 

. e' ,S _ e'H(R) 'If. q q , 
. e' ,S ® e' ,m _ e'+' ,Hm p. q q q 
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q 

YI (U)(l) = L tjuU ,I) , 
j=O 

Y2(U)(l) = J.lioU(i1 ' ... ,ir), 
/If(U)(l) = J.l(io , ... ,iq)u(ir ' ... ,ir+s) ' 

p(U @V)(I) = u(io' ... ,ir)v(ir' ... ,ir+,)· 
Lemma 5.7. The mappings d l ,d2 'YI 'Y2 ' /If, and p defined above are simplicial 
and satisfy the identities 

2 2 dl = d2 = dld2 + d2dl = 0, 

dlY I + yldl = id, d2Y2 + Y2d2 = id, 
/If(dl + d2) = rJ/If. 

Furthermore, dl + d2 is a derivation in the graded sense with respect to the 
multiplication p. 

The proof is tedious but straightforward. 
It follows from Lemma 5.7 that {Cr ,s ; d l ,d2 } is a simplicial double com-

plex. Note that C(R): = C:,-I and.1.: = C;I,P. Let C; and d: C; -+ C;+I 
be the simplicial chain complex defined by 

C n = ~ Cr,n-r 
q ~ q , 

Osrsn 

and define mappings 0::: .1.-+ C, p: C(R) -+ C by 
- d . C- I ,p CO ,p P - d . C P1 -I cP ,0 0::- I' -+ , - 2' -+ . 

For X E !T, let C(X) = (X, C) Est'. Composition with the mappings in 
Lemma 5.7 gives mappings on C(X) satisfying the same identities. 
Proposition 5.8. In the diagram 

st' (X) a ) C(X) 

~~ r lVl 
C(X ,R) 

one has ,0:: = /If, /lfp = identity, and 0:: and p are ring homomorphisms induc-
ing isomorphisms on H •. 
Proof. Using the chain homotopies YI and Y2' we see that, for any p ~ 0, the 
sequences 

0-+ st'P (X) ~ CO ,P :!:.. C I ,P -+ ... , 

0-+ CP(X ,R)!!.. cP'0!!4 Cp,1 -+ 
are exact. Standard results about double complexes now show that 

0::.: H.(st'(X)) -+ H·(C), 

are isomorphisms. 
P.: H.(C(X;R) -+ H.(C) 
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Corollary 5.9. The mapping f/I: sf' (X) -+ C(X; R) induces an algebra isomor-
phism 

6. FIBRE SPACES 

We now introduce the notion of fibration in ~ and develop some of its 
properties. We also define twisted cartesian products and prove some results 
about twisted cartesian products with fibres K(R, n) (and its differential form 
analogue) which will be useful in what follows. 

Let p: E -+ B be a map in ~ and let 1= {iI' ... ,i2 , ... ,if}' where 0:::; 
i l < i2 < ... < if :::; q. Define E(q, I) to be the subspace of Bq x E~_I (E~_I 
is the I-fold product of E I) consisting of all (b, y. , ... ,y.) satisfying q- II I, 

for i, j E I, i < j. Let p /: E -+ E(q ,I) be given by q, q 

PqJ(Y) = (PY 'OilY' ... 'OilY)' 

If k ¢. I, define SkI = {jl ' ... ,jf} where 

. { im for im < k, 
1m = . 1 l" • k 

1m + lOr 1m > . 
Definition 6.1. A map p: E -+ B in ~ is a fibration if, for each q ~ 0 and 
1= {iI' ... ,if} as above, 1 :::; I :::; q, there are mappings 

satisfying 
A / is continuous, q, 
Pq JAq J = identity, 

AqJ : E(q ,I) -+ Eq 

(i) 
(ii) 

( iii) if k or k + 1 E I, then, for all Y E Eq _ 1 ' 

Aq JPq J(Sk Y ) = skY' 

(iv) if k, k + 1 ¢. I and hence I = SkI' , then for all Y E Eq_ 1 ' 

Remark. The definition of a fibration in the category of simplicial sets involves 
only condition (ii) for I of the form {O, 1 , ... ,j - 1 ,j + 1 , ... ,q}. It is 
easy to see [13, Lemma 6.8] that this implies condition (ii) in the category 
A9' for all I. This implication does not hold in the category ~ because 
of the continuity requirement. Conditions (iii) and (iv) assert that Aq J(b, Y/) 
is degenerate whenever (b, Y/) is such as to make this possible, in which case 
Aq J commutes with the degeneracy operations. 

Of course, X E ~ is Kan if and only if the mapping X -+ pt is a fibration. 
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Theorem 6.2. If p: E -+ B is a fibration in t:.!T, and X E ~ , then !T (X, E) 
-+ !T (X ,B) is a fibration in t:.!T. 

Corollary 6.3. If X ,Y E t:.!T and Y is Kan, then !T(X, Y) is Kan. 

Corollary 6.4. If X , Y E t:.!T and Y is Kan, then homotopy is an equivalence 
relation. 

The proof of Theorem 6.2 is given in § 12. 
The usual arguments give 

Theorem 6.5. If p: E -+ B is a fibration and B is Kan, then E is Kan and for 
any bo E B, F = P -I (bo) is Kan and there is an exact sequence 

... -+ 7r n(F ,Yo).!.=. 7r n(E 'Yo) 1.:.. 7rn(B ,bo) ~ 7rn_ I(F 'Yo) -+ ... , 

where Yo E F and i. ,j. and 8. are continuous homomorphisms. 

We will also need the following variant on this result in the next section. 

Proposition 6.6. Let p': y' -+ X' be a fibration with X' connected and y' 
contractible. Let J: X -+ X' be a mapping and p: Y -+ X the induced fibration. 
Then, for any component X of X, we have an exact sequence 

... -+ 7rq(Y, Yo) ~ 7rq(X ,xo) b 7rq(X' ,x~) -+ ... -+ 7r1 (X' ,x~) ~ 7roY -+ *, 

where Y=p-I X , p=p\Y, f=J\x. 
Proof. If we replace f: X -+ X' by a fibration, one sees easily that the fibre 
of this fibration has the homotopy type of Y (since y' is contractible). The 
sequence above is the exact homotopy sequence of this fibration. 

Note that 7r1 (X' ,x~) acts on 7roY and exactness at 7r1 (X' ,x~) asserts that 
8.a = 8.b if and only if there is an a E 7r1 (X' ,x~) with a· a = b . 

We next introduce a particular class of fibre spaces, the twisted cartesian 
products (TCP). 

Let Band F be simplicial spaces and G a simplicial group acting contin-
uously on the left of F . A twisting function r is a sequence 

r = rq: Bq -+ Gq_1 

of continuous mappings, q > 0, satisfying the usual identities: 
r(8I b) = r(80b)80r(b), 
r(8j b) = 8j _ I r(b), 

r(s.b) = q-{ e I' 

I sj_Ir(b), 

i> 1, 
i = 0, 
i> O. 

Here eq_1 E Gq_1 is the identity. The twisted cartesian product (TCP) B x, F 
is the simplicial space with 
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and whose face and degeneracy mappings are the products of those in B with 
those in F except that 

(See [13] for example.) 

Lemma 6.7. If F is Kan, then 1l: B xr F -> B, ll(b, y) = b, is a fibration. 
Proof. Let E=BxrF and (b,z. , ... ,z)EE(q,/). If z=(bl·,yl·) for 

II I{ I 

i E I , then bi = 8i b and 

}- I 

8iYj = T(b)-1 8oYj ' { 
8. IY" 

80T(b)-18oYI' 

If Xi E Fq _ 1 for i E I are defined by 

O<i<j, 

i=O,j>1, 

i=O,j=l. 

{ 
soT(b)Yj' 

Xj = T(b)y l , 

Yo, 

j> 1, 

j = 1, 
j = 0, 

then 8iXj=8j_IXi for i,jEI,i<j. Let 

1 = lq,/: F(q ,/) -> Fq 

be the mapping which exists since F is Kan and define 

A = Aq,/: E(q '/) -> Eq 

by 
-I ~ 

A(b, zi) = (b ,soT(b) A(X/». 

This A is easily seen to satisfy conditions (i)-(iv) of Definition 6.1. 

The following two lemmas define basic fibrations which are analogues of the 
path space fibration over Eilenberg-Mac Lane spaces in the category !T . 

For f E M let Cn(f) , Zn(f) and Bn(f) E Il:T be defined by 

Cn(f)q = r;, 
Zn(f)q = {u E r;ldu = O}, 

Bn(f)q = {dvlv E r;-I}. 
Lemma 6.8. If A E.9f~, then 

d: Cn(Q®A) -> Zn+I(Q®A) 

is a twisted cartesian product with group and fibre Z n (Q ® A) . 
Proof. For q 2:: 0, consider the exact sequence 

0-> Zn(nq ® A) .L Cn(Qq ® A) -> Zn+1 (Qq ® A) -> O. 
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According to Lemma 5.2, the homomorphism 
n n-l 

flo: nq -+!J..q 

defines a splitting 

flo = flo 0 id: Zn+l (nq 0 A) -+ Cn(nq 0 A) 

of this sequence. Furthermore, flOSi = siflo for all i and fl08i = 8iflo for 
i> O. Let 

be defined by 
r(a) = 80flo(a) - flo(80a). 

Then r is a twisting function and the mapping 

K: Zn+l (nq 0 A) x, Zn(nq 0 A) -+ Cn(nq 0 A) 

given by K (a , P) = flo (a) + P is an isomorphism with dK = Tl where Tl: Z n+ 1 X 

Zn -+ Zn+l is projection onto the first factor. 

The same argument can be applied to C(R) using the mapping 

flo: C;+l (R) -+ C; (R) 

given by flo(U)(io' ... ,in) = u(O, io ' ... ,in)' We then have 

Lemma 6.9. The mapping 

£5: Cn+1(R) -+ Zn+l(C(R)) 

is a twisted cartesian product with group and fibre Zn(C(R)). 

Lemma6.10. For any n and A E.s;fC{j', Cn(n0A) and Cn(R) are contractible. 

Proof. Let F: Cn(n 0 A) x !J..[1] -+ C(n 0 A) be defined as follows: If W E 
Cn(n 0 A)q' and s E !J..[1]q' then, viewing s as a mapping s: !J..[q] -+ !J..[1] let 
F (w , s) = (s * t 1) W , where (s * t 1) (u 0 a) = (( s * t) u) 0 a. Then F is the desired 
contraction. The proof that Cn(R) is contractible proceeds in the same way. 

Recall that if A E.s;fC{j' and a E An+1 with da = 0, we can form A[x] = 
Aa[x], where x has degree nand dx = a. In this situation, we have a 
commutative diagram of algebras 

R[y] -----+ R[x, y] -----+ R[x] 

1 
A i 

-----+ A[x] -----+ R[x] 

where p(y) = a and dy = dx = 0 in R[y] and R[x] while dx = y in 
R[x, y]. For any BE.s;fC{j', we apply the functor 9T( ,B) to this diagram in 
which case the top row becomes the TCP 

(6.11) Zn(n0B) -+ Cn(n0B)!!... Zn+l(n0B) 

of Lemma 6.8. 
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Lemma 6.12. The mapping 

Y(i ,B): Y(A[x] , B) -> Y(A ,B) 

is the TCP with fibre Z n (Q 0 B) induced from (6.11) by the mapping 

Y(p ,B): Y(A ,B) -> Y(R[y] ,B) = Zn+t (Q 0 B). 
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Proof. The statement of this lemma is clearly true in the category of simplicial 
sets. We need only show that the mapping 

Y(A[x],B)q -> {(u ,v) E (A ,Qq 0B) x Cn(Qq 0B): v = up} 

is a homeomorphism. Since A[x] = A 0 R[x] as algebras, this follows from 
Lemma 4.3. 

Corollary 6.13. If A is FNF, then 

Y(A ,B) -> Y(R ,B) = point 

is a fibration for any B. Thus Y(A,B) and d(A) =Y(A,R) are Kan. 

7. PROOF OF THEOREM 2.20 

The proof of each of the statements in Theorem 2.20 follows the same course. 
We carry out in detail the proof that 

d: Y(A, B) -> Y(dB ,dA) 

is a weak equivalence, where A, BE!#C(? are FNF, dealing with the remaining 
two statements only when differences in the proofs require us to do so. 

The idea of the proof is to show, by a sequence of reductions, that the theorem 
is true for general A if it is true for A = R[y] . 

Remark. Each of the three statements of Theorem 2.20 involve proving that 
a continuous simplicial mapping induces isomorphisms on homotopy groups. 
Since the homotopy groups i'rq(X) of a simplicial space X are defined to be the 
homotopy groups of the underlying simplicial set Xc5 (with topology on i'rq(X) 
induced from the topology on X), we can ignore the topology on the simplicial 
spaces that occur and work in the category of simplicial sets. We will do so for 
the remainder of the section without further mention. 

Suppose now that A and Bare FNF and consider the diagram 

.9T(!J.B,!J.A) -----+ ... -----+ .9T(!J.B,!J.An ) -----+ .9T(!J.B,!J.An_l) -----+ ... 

. 'T(!J.B,!J.A) -----+ ... -----+ Y(!J.B,!J.A n ) -----+ Y(!J.B,!J.A n _ l ) -----+ 

where A = I~An ,An = An_t[xn] as in Definition 2.5. According to Lemma 
6.11, each of the mappings 

i'r: Y(An ' B) -> Y(A n_ t ,B) 
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is a fibration with fibre sr(R[x] , B), degx = degxn • Setting B = R in 
this same lemma, we see that LlAn --+ LlAn_1 is a fibration with fibre M[x]. 
Therefore, using Theorem 6.2 we see that 

1r' : sr(LlB ,LlAn) --+ sr(LlB ,LlAn_ l ) 

is a fibration with fibre sr(LlB ,LlR[x]). Thus, according to [4, Theorem 3.1, 
p. 254], we have a commutative diagram 
(7.1 ) 

7r;(7(A,B),a) j. -. Ii!!! 7r;(7(An ,B) ,an) -.0 

1 d • l~ 
. , ., 

0-. li!!!17r;+1(7(~B,~An),a~) :.:=,. 7r;(7(~B,~A),a/) !.:::. li!!!7r;(7(~B,~An),a~) -.0 

for each i > 0, where each of the horizontal sequences is exact and [il ,[i 
are induced by the Lln • When i = 0, each term in the diagram is a set with 
distinguished base point (determined by the compatible sequence of base points 
{an}' {a~}) and exactness is defined in the usual way. 

Lemma 7.2. If, for each n, the mapping Lln: sr(An ,B) --+ sr(LlB ,LlAn) is a 
weak equivalence, then the mapping 

Ll: sr(A, B) --+ sr(LlB ,LlA) 

is a weak equivalence. 

Proof. If i > 0, it follows immediately from (7.1) that the mapping 

Ll*: 1ri(sr(A ,) ,a) --+ 1ri(sr(LlB ,LlA) ,a') 

is an isomorphism. Suppose that i = 0 and that we have bl ,b2 E 1ro(sr(A, B)) 
with Ll*b l = Ll*b2 • It then follows from diagram (7.1) that j*b l = j*b2 = 
{a } E lim 1ro(sr (A ,B)). We use this sequence of base points as our distin-n ~ n 

guished points in the top row of (7.1) (with i = 0) and Llnan = a~ as the 
distinguished base points in the bottom row. By exactness, we can find c i ,c2 E 

1~11rI(sr(An ,B) ,an) with j*c l = b l , j*c2 = b2 • But then ([ilc i = ([ilc2 
which implies c i = c2 • Thus b l = b2 and 

Ll*: 1ro(sr(A, B)) --+ 1ro(sr(LlB ,LlA)) 

is injective. The proof of surjectivity is similar and is left to the reader. 

We now proceed with the proof that 

Lln: sr(An ,B) --+ sr(LlP ,LlAn) 

is a weak equivalence. We know by Lemma 6.12 that the fibration 

(7.3) 

is induced from the fibration 

(7.4) sr(R[x, y], B) --+ sr(R[y] , B) 
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by the mapping 
f.: 9f(An_ 1 ,B) -> 9f(R[y] , B), 

where degy = 1 +degx = 1 +degxn and f: R[y] -> An_ 1 is given by f(y) = 
dxn . Furthermore 9f(R[x, y], B) is contractible (by Lemma 6.10) so the im-
age of the mapping (7.4) is contained in a single component X of 9f(R[y] ,B). 
Now, if Z' is a component of 9f(An_ 1 ,B), then n- I Z' c 9f(An ,B) is empty 
unless 

(7.5) 

It follows that 9f (An' B) is the disjoint union of the n -I Z' as Z' ranges over 
those components of 9f(An_ 1 ,B) satisfying (7.5). 

In the same way, we see that the fibration 

(7.6) 

is induced by the mapping 

from the fibration 

(7.7) 9f(IJ.B ,IJ.R[x ,y]) -> 9f(IJ.B ,IJ.R[y]) , 

where 9f(IJ.B, IJ.[Rx ,y]) is contractible since IJ.R[x, y] is (by Lemma 6.10). 
Thus, if X' is the component of 9f(IJ.B ,IJ.R[y]) containing the image of the 
mapping (7.7), then 9f(IJ.B ,IJ.An) is the disjoint union of (n')-I Z ; where Z' 
ranges over the components of 9f (IJ.B ,IJ.An_ l ) satisfying (IJ.f)#Z' eX. 

We can now apply Proposition 6.6 to the fibrations (7.3) and (7.6) obtaining 
the diagram of exact sequences 

•.. --+ 1tq(y, Yo) --+ 1tq(Z, zo) 1tq(X,Xo) --+ ... --+ 1t,(X,xo) --+ 1to(Y) --+* 

1 1 1 1 1 
.. . --+ 1tq( Y', Yo) --+ 1tq(Z', zb) 1tq(X', xo) --+ ..• --+ 1t, (X', xo) --+ 1to(Y') --+ • 

Here X is the image of the mapping (7.4), Z is any component of 9f(An_ 1 ,B) 

mapping into X under the mapping f# and Y = n- I Z c 9f(An ,B). Simi-
larly, X' is the image of (7.7), Z' is any component of 9f (IJ.B ,Mn_ l ) map-
ping into X' under the mapping (IJ.f) # ,and y' = (n 1 ) - 1 Z' c 9f (IJ.B , IJ.A n) . 

Using Lemma 7.2, the 5-Lemma, and induction on n, we have the following. 

Lemma 7.8. If the mapping 

IJ.: 9f (A ,B) -> 9f (IJ.B ,IJ.A) 

is a weak equivalence for A = R[y], then it is a weak equivalence for any A 
which is FNF. 

To prove that IJ.: 9f(R[y], B) -> 9f(IJ.B ,IJ.R[y]) is a weak equivalence, we 
need the following. 
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Lemma 7.9. The mapping 
~*: 7ro(Y(R[y] , B)) --+ 7ro(Y(~B ,~[y]) 

is a bijection for y of arbitrary degree. Furthermore, if degree y = 0, then 
~*: 7rj(Y(R[y] ,B) ,a) --+ 7rj(Y(~B ,~R[y]) ,a') 

is an isomorphism for all j > O. 
Corollary 7.10. The mapping 

~: Y(R[y] , B) --+ Y(~B ,~R[y]) 

is a weak equivalence. 
Proof of Corollary 7.10. Consider the diagram of fibrations 

Y(R[x], B) - Y(R[x, y], B) - Y(R[y], B) 

1 1 1 
Y(~B ,~R[x]) - Y(~B ,~R[x, y]) - Y(~B ,~R[y]) 

where dx = y in R[x, y]. Since the total space of each of the above fibra-
tions is contractible (by Lemma 6.10), the homotopy exact sequences of these 
fibrations reduce to 

7r j +1 (Y(R[y], B)) - 7rj(Y(R[x], B)) 

1 1 
7r j +1 (Y(~B ,~R[y])) - 7rj(Y(~B, ~R[x])) 

An easy induction using Lemma 7.9 gives the required result. 

It now follows that the first assertion of Theorem 2.20 will be proved once we 
prove Lemma 7.9. Indeed, the arguments that we have developed in this section 
up to this point can be modified by making the obvious substitutions so as to 
deal with the second and third assertions of Theorem 2.20. As a result, Theorem 
2.20 will be proved once we prove Lemma 7.9 and the following lemma. 

Lemma 7.11. The mappings 

y *: 7ro(Y(R[y] ,sf (X)) --+ 7ro(Y(X ,~R[y]) , 
f*: 7ro(Y(R[y] , B)) --+ 7ro(Y(R[y] , C)) 

are bijections for y of arbitrary degree. Furthermore, If degree y = 0, then 

y*: 7r/Y(R[y] ,sf(X)) ,a) --+ 7rj(Y(X ,~R[y]) ,a'), 

f*: 7r j (Y(R[y] , B)), a) --+ 7r j (Y(R[y] , C)), a') 

are isomorphisms for all j > 0 . 

The proofs of Lemmas 7.9 and 7.11 involve the same ideas so we present 
them together. We begin by defining an isomorphism 

c;: 7ro(Y(R[y] ,B)) --+ Hn(B) , 
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where n = dimy. (Note: Both Y(R[y] , B) and Y(!1B ,!1R[y]) are simplicial 
groups so 7ro(Y(R[y] , B)) and 7ro(Y(!1B, !1R[y])) are groups.) 

By definition, 
Y(R[y], B)o = (R[y] ,B) = Zn(B) , 

where Zn(B) is the group of n-cycles in B. It follows that we have an epi-
morphism 

¢: Y(R[y] ,B) ----> Hn(B). 

Suppose Z E Y(R[y] , B)o is in the same component as O. Then there is an 
element WE Y(R[y],B)1 = Zn(Q I ~B) with 80w = Z, 81w = o. Ifwe 
define v: (Q I ~B)n ----> B n- I by v(a ~b) = 0 if a E Q~, bE B n , and if 
bE B n - I , 

v(adtl ~ b) = (10 1 a(tl) dtl) b 

then dv + vd = 80 - 81 so dv(w) = z. Hence ¢ induces an epimorphism 

¢: 7ro(Y(R[y],B)) ----> Hn(B). 

To show that ¢ is a monomorphism, suppose z = dv for some v E B n - I • 

Then, if v E (Q I ~ B)n is given by 

v=tl~z+dtl~v, 

we have 80v = Z, 81 V = 0 and z = 0 in 7ro(Y(R[y] , B)). It follows that ¢ 
is an isomorphism. 

Now, if f: B ----> C is a DG algebra mapping, we have a commutative dia-
gram 

If f*: H* (B) ----> HJ C) is an isomorphism, then 

f*: 7ro(Y(A, B)) ----> 7ro(Y(A, C)) 

is an isomorphism and the second of the four assertions of Lemma 7.11 IS 

proved. 
We next define an isomorphism 

for any simplicial space X. By definition, 

Y(X ,!1(R[Y]))q = (X x !1[q] , Zn(!1)) 

= Zn(sf'(X) x !1[q]) 

= Zn(sf' (X)) if q = O. 
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Let 

be given by 
~/{Z} = z+Bn(JQ'(X)). 

We show that ~' is well defined and an isomorphism. 
Recall that in §5, we defined np(~q x l) to be the P forms on ~q x I and 

we defined 

by 

J..l(w) = (-l)P-1 101 w2(t)dt, 

where w = WI (t) + w2(t) dt . Note that we may view the elements of 
JQ'P(~[q] x ~[l]) as continuous, piecewise smooth p-forms on ~q x I and 
the formula for J..l makes sense on such forms and gives a map 

J..l: JQ'P(~[q] x ~[l]) -> JQ'p-1 (~[q]). 

Furthermore, we have dJ..l + J..ld = i~ - i~ , where io ' i l : ~[q] -> d[q] x ~[l] are 
the inclusions. 

To see that ~' is well defined, suppose Zo and z I are elements of Zn(JQ' (X)) 
and zi=oiv,where v E Zn(JQ'(X Xd[l])). Let VEJQ'n-I(X) be given by 

v(x) = J..l(tx x ida[l/v 

for x E Xq , where tx: d[q] -> X with tx(O, ... ,q) = x. Then 

dv(x) = (i~ - i~ - J..ld)(tx x ida[l/v 

= (i~ - i~)(tx x ida[l/v 
= (oov - 0IV)(X) = zo(x) - ZI(X) 

so ~' is well defined. 
Clearly ~' is an epimorphism; we show it is a monomorphism. Suppose 

Z = dv, v E JQ'n-I(~(B)). Let WE Zn(JQ' (X x ~[l])) be given as follows: If 
PI and P2 are the projectives of X x ~[l] onto the factors, then 

w(x) = (d(p;tl))p~v(x) + (p;tl)(p>)(x). 

It is easily checked that dw = 0, °0 w = 0, and °1 W = z. Thus ~' is an 
isomorphism. 

It follows directly from the definitions that the diagrams 

1l0(Sf(R[y] , B)) ~ 1l0(Sf(~B, ~R[y])) 

~l~ (l~ 
i. ----
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1ro(ST(R[y] , A(X))) 

~l ~ 
Hn(sQ' (X)) 

~ 1ro(ST(X ,M[y])) 

~/l ~ 
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are commutative, where i.: Hn(B) ~ Hn(sQ' (IlB)) is the canonical mapping 
defined in §2. Since B is FNF, i. is an isomorphism by Proposition 2.8. The 
first assertions of both Lemmas 7.9 and 7.11 are an immediate consequence of 
these diagrams. 

We now prove the remaining assertions of Lemmas 7.9 and 7.11, namely that 
certain mappings between simplicial spaces defined in terms of R[y] induce 
isomorphisms on homotopy in positive dimensions if degree y = o. In fact, 
we prove that all of these homotopy groups vanish. 

Assume degree y = o. By definition, 

ST(R[y], B)q = (R[y], nq 0 B) = Zo(nq 0 B). 

It is easy to see that d(J 0 b) = 0 for f E n~, bE B O if and only if df = 0 
and db = o. Thus, 

ST(R[y] , B)q = Ho(B) 

for all q 2:: 0 and all face and degeneracy mappings are the identity. Therefore, 
1rj(ST(R[y], B) ,a) = 0 for all j> o. 

Similarly, IlR[Y]q = R for all q 2:: 0 and all face and degeneracy mappings 
in IlR[y] are the identity. It follows that, for any Z E tl!T , 

ST(Z ,IlR[Y])q = (Il[q] x Z ,IlR[y]) 

consists of mappings that are constant on components; that is, all continuous 
mappings of 1ro(Z) into R and all face and degeneracy mappings the identity. 
Again, 1rj(ST(Z, IlR[y])) = 0 for j> 0 and Theorem 2.20 is proved. 

8. THE SERRE SPECTRAL SEQUENCE FOR CONTINUOUS COHOMOLOGY 

Let B x T F be a twisted cartesian product with group G. If r = r q: B q ~ 

Gq _ l is defined by 

r(b) = sg-18r1r(b) 

for b E Bq , one easily checks that it is a twisting function if Go = 1ro(G). 
Define 

by 
(.Ie(g, u))(y) = u«s6g)y). 

This mapping induces a continuous mapping 

.Ie: Go x Hq(F) ---+ Hq(F). 
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We define the twisted continuous cohomology groups of B with coefficients 
in H q (F), H P (B; H q (F)r)' to be the homology of the cochain complex 
CP(B;Hq(F)) = continuous functions from Bp to Hq(F) vanishing on de-
generacies with 

given by 
p+1 

(ou)(b) = A(Ot-1r(b) , u(oob)) + I)-l)iu(oib). 
i=1 

Recall that for X E!l!T the n-skeleton of X is the smallest subsimplicial 
space X(n) of X containing Xn . Let E = B xr F and ~E = 7C- 1(B(P)). 
Following the notation of [12], we define the Serre spectral sequence of E = 
B Xr F by 

AP.q = {u E Cp+q(E)lu(~_IE) = O}, 
E; ,q = AP ,q no- I (AP+r ,q-r+1 )/AP+1 ,q-I no- I (AP+r ,q-r+l) 

+ AP ,q n OA P- r+1 ,q+r-2 , 

dr{u} = {ou} , 
DP,q = image Hp+q(AP) ---+ Hp+q(C*(E)) , 

where A P = '" A P ,q Wq~O • 
Elementary quotient ring manipulations yield the following (see [12] for 

proofs). 

Theorem 8.1. {Er' dr} is a multiplicative spectral sequence (with respect to the 
usual cup products) with E; ,q ;:::: DP ,q / DP+ 1 ,q-I for r sufficiently large. 

We next turn to the calculation of E2 , which requires some hypotheses on 
F. The main difficulty is in proving that the cohomology H* (B x F) of the 
product is isomorphic to H*(B;H*(F)). We define C*(F) to be splittable if 
the usual arguments yield this result, namely: 

Definition 8.2. A differentiable graded topological vector space C is splittable 
if the mappings 

0: Cq ---+ Bq+1 = {ou: u E Cq}, 
,,: zq = {u E Cq: ou = O} ---+ Hq(C) 

have continuous (not necessarily linear) sections for all q 2 O. A simplicial 
space X is splittable if C* (X; R) is splittable. 

We develop some of the properties of this notion at the end of this section. 

Theorem 8.3. If F is splittable and Go = 7CO(G) , then the usual map yields a 
ring isomorphism 
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Proof. The proof of this result is accomplished by a series of lemmas. Let E; ,q 
-pq -and Er' be the spectral sequences associated to E = B xr F and E = E xrF 

respectively. Note that AP ,q = AP ,q. We first prove that E; ,q = E~ ,q for 
r ~ 2. 

Let V/ Bq x Fq ----> Bq x Fq , 1 ~ j ~ q - 1, be given by 

Vj(b, y) = (s/Job, (sba(-lr(b))s/JoY) 

and V: Cn(E) ----> Cn(E) by 
q-I 

Vu = 2)-1)juVr 
j=1 

Lemma 8.4. The map V is continuous and satisfies V(AP) C AP+I and 

(c5r V - Vc5r - c5r + c5r )(AP ) c AP+2 , 

where c5r : Cn(E) ----> Cn+I(E) and c5r : Cn(E) ----> Cn+I(E) aretheusualdifferen-
tials. 
Proof. Suppose u E AP , (b, y) E (B Xr F)q, bE B(P) . We want to show that 
V(u)(b, y) = O. If aob E B(P-') , sjaOb E B(P-') and hence, V(u)(b, y) = O. 
Suppose aob tt. B(P-') . Then b = sob' and V)b, y) = sj(aob, aoY), which is 
degenerate, and hence V(u)(b, y) = O. 

Now suppose bE B(P+') . We show that 

(8.5) 

First note that 

(c5r - c5r )(u)(b , y) = u(aob , r(b )aof) - u(aob ,sg-' art r(b )aof). 

It is straightforward to verify that for i > 0 

1 
Vj_,(ai+,b,ai+"Y)' i<j<q, 

.V(b )= (aob,sr'a(-'r(b)aoY)' i=j, al J ,Y .. 
(aob,sJa(r(b)aoY) , i=j+l, 

Vj(aib ,aiy) , i > j + 1, 

aOVj(b, y) = (Sj_,aOaOb ,(Sj_' r(aob))(at' a;-'r(b))(sj_1aoaoY)) , 

( b b j-' j b Vj aj +, ,aj+,y) = Sj(aOaj +, ,(So a, r( ))aOaj+,y) , 

Vj(a,b ,a,Y) = (sjaOaOb, (Sba(+'r(aob))(sba(-'aor(b))soaoaoY) ' 

v/aob, r(b)aoY) = (sjaOaOb, (sba;-'r(aob))(sjaor(b))(sjaOaoY)). 

Substituting these in (8.5), all the terms cancel, except possibly those above 
starting with sjaOaOb, bE B(P+') . Hence, sjaOaOb E B P- I unless b = sob' , in 
which case r( b) = e , the last two terms cancel, and ao Vj (b ,f) is degenerate. 
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pq -pq -Lemma 8.6. For r ::; 2, Er ' = E r ' , where Er and Er are the spectral se-
quences associated to B x T F and B x'f F respectively. 

Proof. As mentioned earlier, AP = -;::r. One easily checks, using Lemma 8.4, 
that do = do and d l = d l • Thus 

E2 = H.(EI ,dl ) = H.(EI ,d l ) = E 2· 

Theorem 8.7. Let {E;·q, dr } be the spectral sequence for E = B X T F. Then, 
if F is splittable, we have Ef·q ~ H P (B; H q (F\) . 

Proof. We begin with a digression. Let X = {Xp .q} be a bisimplicial space 
with face and degeneracy mappings 

a'· X -t X i' p .q p-I .q , all X X i: P.q -t p .q-I ' 
'X X " X X Si: p.q -t p+1 .q , Si: p.q -t P .q+l· 

The diagonal of X is the simplicial space X, where Xp = Xp p' a = a' a" = 
• I I I 

"' d ' II "' p.q d' d" ai ai' an Sj = Slj = SjSj' Let C(X) = (C , , ) be the double complex 
defined by 

C p·q = {u E (Xp.q , R): u 0 s; = u 0 s~' = 0,0 ::; i ::; p - 1 ,0 ::; j ::; q - I} , 
p+1 

, ~ i , 
d u = L--(-l) uoai , 

i=O 

q+1 
d"u = L(-l)juoa;' 

j=O 

and denote by Ct(X) the associated total complex. Define T: Ct(X) -t C(X) 
by 

, q II p 
(Tu)(x) = u((ap+l ) (ao ) x) 

for u E C p •q , X E Xp+q • 

Lemma 8.8. There is a mapping T': C(X) -t Ct(X) and cochain homotopies 
rp: C(X) -t C(X), 1fI: Ct(X) -t Ct(X) with 

l5rp + rpl5 = TT' - id , 

Furthermore, Q.: H.(C.(X)) -t H.(C(X) is an algebra isomorphism. 

The proof of the first part of the lemma follows the same lines as the proof 
of Theorem 2.9 of Dold and Puppe [7]. To prove that T preserves products, 
we need a variant of the cup- i products. 

For u E C p·q (X), v E Cr .s (X) , define u U 1 v E Cp+q+r+s-I (X) by 

where 

p+q 
(u U1 v)(x) = L( -l)(q-l)(r+l)u(Djx)V(EjX) , 

j=p 

D = (a' )q+r+s-I (a")p(a")r-I (a" )s 
J p+ I 0 J p+q+r' 

E. = (a')j(a' )p+q+s- j-I (a")p+q+r-I. 
J 0 J+r+1 0 
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The fact that T* is multiplicative now follows from 

Lemma 8.9. If U ut v is defined as above, then 

J(u ut v) = (Ju) ut v + (-I)P+Qu ut Jv 

+ (-I)p+q+r(T(uv) - T(u)T(v)). 
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The proof of this equation proceeds by first proving it in the special case 
where X P.q = Y P x Z q' Y and Z simplicial sets. This case can be seen to 
follow from the commutativity of ordinary cup products as in Steenrod [20]. 
The general case now follows from the fact that given x EX, there is a p.q 
unique bisimplicial mapping 

f: ~[p] x ~[q] -> X 

with f((O, ... ,p) ,(0, ... ,q)) = x . The details are left to the reader. 
Define a bisimplicial complex X by X q = Bp x F with P. q 

o'(b, y) = { (oob ,s6r(of- tb)y) , 
I (oib,y), 

0;' (b , y) = (b , 0i y) , 

s;(b ,y) = (sib ,y), 

i = 0, 
i> 0, 

for bE Bpy E Fq. Note that X = B xrF. Define a filtration of Ct(X) by 

AP = L:L:CJ ·q 

J?pq?O 

and let Er be the associated spectral sequence. Then it is easy to check that 
the mappings of Lemma 8.8 are filtration preserving so that T induces an 
isomorphism Ef·q ~ E~ ,q and we need only prove that 

Ef'q ~ HP(B ;Hq(F),). 

Now, Et is the homology of Ct(X) with respect to the differential d2 : cP ,q 
-> c P ,q+t . Since Fq is compactly generated for all q ~ 0, we can identify 

cP,q = CP(B;Cq(F)) 

(see proof of Theorem 5.6 in [21]) and J2 is induced from the coboundary 
operator on C*(F). We must show that 

kerd . cP ,q cP ,Ht 
2' -> ~ cP(B;Hq(F)). 

Imd2 : CP ,q-t -> CP ,q 

To begin with, the image of the mapping 

d2 : CP(B;Cq-t(F)) -> CP(B;Cq(F)) 
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is clearly contained in CP(B;Bq(F)). Since F is splittable, 6: Cq-I(F) -+ 

B q (F) has a continuous section and it follows that 

d2C P(B;Cq- I(F)) = CP(B;Bq(F)). 

Next, the mapping 
CP(B;Zq(F)) -+ CP(B;Hq(F)) 

clearly has kernel cP (B; B q (F)) and the fact that F is splittable again implies 
that this mapping is onto. This completes the proof of Theorem 8.3. 

We conclude this section with three results concerning splittable spaces. 

Proposition 8.10. If C is a splittable differential graded topological vector space, 
then Hq(C) is Hausdorfffor all q 2: O. 
Proof. Let t: Hq(C) -+ Zq be a section for 11: Zq -+ Hq(C). Then, for x =f:. y 
in Hq(C) , let U and V be disjoint neighborhoods of t(x), t(y) in Zq. Then 
t- I U and t- I V are disjoint neighborhoods of x and y in Hq(C). 

Definition 8.11. Let C, C be differential graded topological spaces. We say C 
is a retract of C if there are continuous linear mappings 

a: C -+ C, 

preserving differentials and continuous linear D: Cq -+ Cq - I , q > 0, with 
pa - id = <5D + D<5 . 
Proposition 8.12. If C is splittable and C is a retract of C, then C is splittable. 
Proof. Let s: B q -+ C q+ I, t: H q -+ zq be the mappings which exist because 
C is splittable. A straightforward computation shows that the mappings 

-. -nflB C q+1 s. -+ , 

given by s = psa + D, t = pta. satisfy the conditions necessary to make C 
splittable. 

Proposition 8.13. Let X be a simplicial space such that Xq is locally compact 
and countable at infinity for all q 2: O. Then C· (X; R) is splittable. 
Proof. If Xq is locally compact and countable at infinity, the space (Xq , R) 
of continuous functions from Xq to R is a Frechet space (by (4.7)). Since 
C q (X; R) is a closed subspace of (Xq ,R) , it is also a Frechet space (by (4.5)). 
Proposition 8.13 now follows from (4.8). 

9. PROOF OF LEMMA 2.8 

We wish to prove that if A is FNF, then 

is an isomorphism. Choose generators for A so that A = U An' Ao = R, 
An = A n_ 1 [xn] as in Definition 2.5. Then, for fixed p and q, A P = A~ and 
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.1(A)q = .1(An)q for n sufficiently large so we can assume A finitely generated. 
The proof now proceeds by induction on n. We first prove Lemma 2.8 for 
n = 1 , that is, when .1A is a differential form version of K(R, m). We begin 
with the easier task of determining H*(K(R, m)). 

Lemma 9.1. There is an isomorphism H* (K(R , 1)) :::::: R[x], where degree x = 1 . 
Proof. Sending u E Z'(.1[q] ;R) into (u(O, 1), u(l, 2), ... ,u(q - 1, q)) E Rq 

defines an isomorphism K(R, l)q :::::: R q such that 

i = 0, 
{ 

(a2 , ••• ,aq ), 

8 j (a, ' ... ,aq) = (a, ' ... ,ai+, + ai' ... ,aq) , 0 < i < q , 

(a, ' ... ,aq _,), i = q. 

It follows that H* (K(R , 1)) is the classical continuous cohomology of R as a 
Lie group. It now follows from the Van Est theorem [24] that H*(K(R, 1)) is 
the Lie algebra cohomology of the Lie algebra R which is clearly R[x]. 

Our next result proves Theorem 2.3. 

Lemma 9.2. Thealgebra e*(K(R,n),R) issplittableand H*(K(R,n)) ::::::R[x] 
where degree x = n . 
Proof. We prove this result by induction on n. The usual Serre spectral se-
quence argument applied to the TCP 

K (R , n) C en (R) -+ K (R , n + 1) 

(see Lemma 6.9) yields the desired result if we can show that the Serre spectral 
sequence is applicable. In going from n to n + 1 , we need to know that 
e*(K(R, n)) is splittable. Assume Lemma 8.2 is true for n - 1 and hence, 
by the Serre spectral sequence, H*(K(R, n)) is isomorphic to R[x]. We show 
Bq(K(R, n)) c eq(K(R, n)) is closed. By hypothesis, the inclusion K(Z, n) c 
K(R, n) induces an isomorphism, 

H q (K(R, n)) -+ H q (K(Z ,n)) -=. Hom(Hq(K(Z ,n), R), R). 

Hence for any q for which these groups are nonzero, there is a chain 
cq E e.(K(Z ,n)) such that evaluation on cq gives a continuous isomorphism 
Hq(K(R, n)) -+ R. Then B q is closed because it is the kernel of the continuous 
map of Zn(K(R, n)) to R given by evaluation on cq ' 

For each q ~ 0, K(R, n)q is a Euclidean space and it follows from (4.7) that 
(K(R , n) q ,R) is a Frechet space. Thus, using (4.5) and (4.6), e q (K(R , n) , R) , 
Zq(K(R,n),R),Bq(K(R,n),R) and Hq(K(R,n)) are Frechet spaces. The 
fact that e* (K(R , n) ,R) is a splittable algebra now follows from (4.8). 

We now prove Lemma 2.8 for A = R[y] . 

Lemma 9.3. The algebra si .1(R[y]) is splittable and 

i*: H* (R[y]) :::::: R[y] -+ H* (si .1(R[y])) 

is an isomorphism. 
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Proof. We begin with the second assertion of the lemma. Suppose degree y = 
n. Then the mappings rp and If! of Lemma 5.5 give mappings 

K(R, n) .!!!.. dR[y] x.. K(R, n) 

with If!rp = identity. We define a homotopy 

F: Zn(Q) x Ll[1] -+ Zn(Q) 

between rp If! and the identity as follows. Let s E Ll[ l]q and w E Q; with 
dw = O. Then s determines a unique simplicial mapping &: Ll[q] -+ Ll[I] with 
&(0, I , ... ,q) = s and thus a linear mapping s: Llq -+ Ll' . Let f: Llq -+ Llq xLlq 

be the mapping id x s and define 

F(w ,s) = f·((p~w)(p;t,) + (p~rplf!w)(l- p;t,) + (-It(p~yw)(p;dt,)), 
where 

are the projections and y: Q: -+ Q:-' is the mapping of Lemma 5.5. A 
straightforward computation (using Lemma 5.5) shows that F has the required 
properties. 

If D: Cq-' (Ll(R[xn])) -+ Cq (Ll(R[xn])) is the cochain homotopy coming 
from F above, then 

dD + Dd = If!. rp. - id. 

Hence, by Proposition 8.12 and Lemma 9.2, C·(Ll(R[xn])) is splittable. 
We complete the inductive step proving Lemma 2.8 by the following 

Lemma 9.4. If i.: H.(A) -+ H.(Ji1' Ll(A)) is an isomorphism then 

i.: H.(A[y]) -+ H.(Ji1' Ll(A[y])) 

is also an isomorphism. 

Proof. According to Theorem 5.6, it is sufficient to show that the composite 

j: A[y] ~ Ji1' Ll(A[y]) x.. C· (Ll(A[y])) 

induces an isomorphism on homology. By Lemmas 6.12 and 8.3, we may apply 
the Serre spectral sequence to the fibration 

tr: Ll(A[y]) -+ Ll(A). 

Define a filtration on A [y] by 

F P = {Laiyi E A[y]: dima i ~ p}. 

We must show that j is filtration preserving. 

Suppose a = I: ai / , dima i ~ p, and WE Ll(A[Y])q with trW E Ll(A):-' . 
We need to show that j(a)(w) = O. There is a simplicial mapping h: Ll[q]-+ 
Ll[p - 1] and w' E Ll(A)p_, such that trW = h·w' , where h·: Qp_, -+ Qq. 
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Hence, 
i(a)(w) = w(a) = w (2: a j /) = 2: w(aj)w(/) = 0 

since w(a j ) = h*w' (a j ) = O. 
It now follows that j induces a mapping of spectral sequences and 

Ef·q (A[y]) = Hp(A) ® (R[y])q , 

Ef·q (C* (Ll(A[y]))) = H P (Ll(A)) ® H q (Ll(R[y]))). 
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Since the spectral sequences are multiplicative, it suffices to prove that j induces 
an isomorphism on Eg·q and Ef·O. However, this follows from Lemma 9.3 
and the hypothesis on A. 

10. PROOF OF THEOREM 2.13 

We begin by proving Theorem 2.13 for X = K(n ,n). Since n is abelian 
(by definition) and locally euclidean (by assumption), it is the product of groups 
isomorphic to Z, Zp = Zj pZ ,Sl , or R. 

Lemma 10.1. For any n ~ 1 , 

H*(K(n, n)) == R[x] ifn = Z or R, 

= R ifn = Zp or Sl 

where degx = n. 

Proof. The case n = R is dealt with in Theorem 2.3 and the cases n = Z, Z p 

are well known. Suppose n = Sl and n = 1. Then, just as in the proof of 
Lemma 9.1, we see that H*(K(SI ,1)) is the classical continuous cohomology 
of the Lie group Sl, which is trivial since Sl is compact (by the Van Est 
theorem [24]). 

The fact that H*(K(SI ,n)) is trivial for n > 1 now follows by induction 
in the usual way using the continuous cohomology version of the Serre spectral 
sequence (§8) of the TCP 

K(SI ,n) C Cn(SI) -+ K(SI ,n + 1). 

Corollary 10.2. For any n ~ 1, we have 

j {O if i =f:. n or if n = Z p or S I , 
n (K(n ,n)) = 

R if i = nand n = Z or R. 

This proves Theorem 2.13 for X = K (n , n). We next prove the result for 
X = Xn = E(un) by induction on n. 

Suppose M n_1 is minimal and f: Xn_1 -+ LlMn_1 is a weak equivalence 
with 
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We can factor Xn ---> X n- l into a sequence of TCP with fibre K(1C. n), where 
1C is one of the groups mentioned above. Thus, it is sufficient to consider the 
case in which 1C n is one of these groups. If 1C n is isomorphic to either Z p or 
Sl , then H*(Xn)::::: H*(Xn_l) and we take Mn = Mn_ l . 

If 1C n is isomorphic to Z or R, we let p: 1C n ---> R be the homomorphism 
taking 1 onto 1. Let W E Hn+l(il(Mn_ 1)) be the image of un under the 
composite 

H n+l (X .1C) ---> H n+l (X . R) ::::: H n+l (il(M )) n-l n n-l n-l 

and v E Hn+l(Mn_ l ) the image of W under the composite 

Hn+l(il(Mn_ l ))::::: Hn+l(sI(il(Mn_l)))::::: Hn+l(Mn_ l )· 

Then, if fJ E Mn_ l is a representative for v E Hn+l (Mn_ 1) we set Mn = 
Mn_l[x] with degree x = nand dx = fJ. Comparing Serre spectral se-
quence shows that H*(Xn) and H* E(w) are isomorphic. In addition, one 
has ni(Xn)::::: 1C iE(w) and, by Lemma 6.12, E(wn) and il(Mn) are homotopy 
equivalent. The exact homotopy sequence of the TCP 

yields an isomorphism 
i . 

1C (il(Mn))::::: Mn/Mn' 
The general case of Theorem 2.3 follows from the observation that for fixed 

q, 
Hq(X)::::: Hq(Xn) and 1Cq(X)::::: 1CQ(Xn) 

for n large enough. 

11. PROOF OF THEOREM 2.23 

We begin with the construction of simplicial sets Xl and X2 satisfying the 
conditions of the theorem. 

Let 1 E H q (K (Z . q) ; Z) be the generator and let X m be the fibration over 
Q n. 

K(Z . 2) v K(Z . 2) induced from the contractible fibration by 

1. : K(Z . 2) V K(Z . 2) ---> K(Z . 4) . n.m 
where 

Then 
* 2 2 H (Xn,m;Q)=Q[x.y]/{nx -my .xy}. 

where x and y have degree 2. If z = x 2 / m , then 
2 H (Xn.m ; Q) ::::: Q + Q 

with basis x and y and 
4 

H (Xn m ;Q)::::: Q 



CONTINUOUS COHOMOLOGY AND REAL HOMOTOPY TYPE 99 

with basis z. The matrix for quadratic form H2(Xn ,m) --+ H4(Xn ,m) in this 
b .. (m 0) aSls IS 0 n . 

Let Mn ,m = R[x ,Y ,U, v] E Jii'~, where dx = dy = 0, du = nx2 - mi 
and dv = xy. In [3, § 16], it is shown that since, mx2 - mi ,xy is an ESP 
sequence, Mn ,m is a minimal model for Jii' (Xn ,m) . 

Let Xl = Xl ,15 and X2 = X3 ,5' Then the matrices 

(11.1) 

are not equivalent over Q. For if they were equivalent, one would have rational 
solutions to the equation 3a2 + 5b 2 = 1 , or, equivalently, integer solutions to 
the equations 

( 11.2) 2 2 2 3a + 5b = c . 

The fact that this is not possible is proved by working mod 3 and using the 
notion of "infinite descent"; the existence of solutions a, b ,c for (11.2) imply 
the existence of solutions a' , b' ,c' with a' < a, b' < b, c' < c . 

It follows that H* (Xl; Q) and H* (X2 ; Q) are not isomorphic. However, the 
matrices (11.1) are equivalent over R (since they have the same signatures). 
Hence M I , 15 and M3 ,5 are isomorphic and then Xl and X2 are equivalent 
in ~R' 

We now prove the second assertion of Theorem 2.23. We are indebted to 
Tsuneo Tamagawa for his help with this proof. 

Let A be the free DG algebra over R generated by Xl"" 'Xn E A2 , 

YI"" 'Ym E A3 and with 

1 ::::; i::::; m. 

We say that A has a rational form if there is a DG algebra A' over Q and 
an isomorphism A:::::: A' ®Q R of DG algebras. Equivalently, A has a rational 
form if we can choose bases Xl' ... ,xn for A 2 , YI , ••• 'Ym for A 3 such that 

d - '" b- jk - -Yi = ~ XjXk 
j~k 

- jk with bi E Q. 
Suppose A has a rational form. Let P = (Pi) be an invertible n x n matrix, 

Q = (qi) an invertible m x m matrix with 

Then 
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so 
b- rs ~ bkt 

i = ~ qij j PkrPts' 
j ,k,l 

Of course, b{k can be expressed in terms of h;s in a similar way. 
'k 2 2 Let N = n(n + 1)m/2. Then there are N of the bi and n + m of the 

Pij , qij' We can think of the passage from h;s to bt as defining a mapping 
({J p ,Q: RN -> RN depending on the particular choice of P and Q. If we can 
fix a rational point h E QN C RN , then the set 

A'(h) = {({Jp,Q(h): P invertible n x n,Q invertible m x m} 

corresponds to all DG algebras A (which of course depend on bt) with A' 
defined by h as their rational form. Thus, the set UhEQ A' (h) corresponds to 
the set of all A as above which have a rational form. 

Now, if N> n2 +m2 (for example, n = 5, m = 2), then A'(h) is the image 
n2+m2 nl+ml N of an open set in R under a differentiable mapping R -> R . Thus, 

the set UhEQN A'(h) cannot be all of RN and any point in its complement 
corresponds to a real form of A with no rational form. 

12. PROOF OF THEOREM 6.2 

We prove that if p: E -> B is a fibration in AY, then for any X E AY , 
9"(X ,E) -> 9"(X ,B) is a fibration in AY. 

If / = {iI' ... ,it}, 0 :s i l < ... < it :s q, let d[q, /] denote the small-
est subsimplicial set of .1[q] containing (0, ... ,) , ... ,q) for j E /. Let 
9" E(q ,I) be the subsimplicial space of 9"(.1[q], B) x 9"(.1[q ,/], E) whose P-
simplices are pairs (u, v), where u: .1[p] x .1[q] -> B, v: .1[p] x .1[q ,/] -> E , 
and ul.1[p] x .1[q ,/] = pv. The projection induces a map Pq,/: 9"(.1[q] , E) -> 

9" E(q ,I). Note that 

E(q ,I) = 9" E(q ,1)0 ' 

and P q,/ in dimension zero coincides with P q,/ as previously defined. Fur-
thermore, conditions (iii) and (iv) in the definition of fibration translate into a 
functional form as follows: If 

(u ,v) E E(q - 1,1) c (.1[q - I],B) x (d[q - l,/],E) 

and j tI. / , then 
Aq_1 ,/(u, v)dj = Aq ,Sj/(udj , vd), 

If j or j + 1 E /, v:.1[ q - 1] -> E and u = pv , then 

A /(ud, vdl.1[q ,/]) = vdJ., q, ) ) 
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Proposition 12.1. The following are equivalent: 
(I) p: E -+ B is a fibration in A!T. 
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(II) The maps Pq.I: 7(Mq] , E) p -+ 7 E(q ,I) p have continuous sections 
AI,p = Aq.I ,p such that if (u, v) E 7E(q, I)p (u: ~[p] x ~[q] -+ B, v: Mp] x 
~[q , I] -+ E), then 

(i) Al ,p_1 (u(ej x id), v(ej x id)) = Al ,p(u, v)(ej x id). 
(ii) Al p+l(u(d X id), v(d x id)) = A/ (u, v)(d. x id). , J J ,p J 

(iii) If j or j + 1 E I, then Al ,p(u(id x d), v(id x dj )) = v(id x d) where 
v: ~[p] x Mq - 1] -+ E and u = pv. 

(iv) If j ~ I, then 

A-s I (u(id x dJ ), v(id x d)) = Al p(u, v)(id x d). ) ,p J, J 

(III) There are maps Aq.I: 7 E(q ,I) -+ 7(~q ,E) such that 
(i) P q .IAq.I = identity. 
(ii) If j or j + 1 E I, then 

Aq .IPq .I7(dj, E) = 7(dj ,E)(7(dj , E): 7(~[q - 1], E) -+ 7(~[q], E)). 

(iii) If j ~ I and d; denotes the map induced by d j : ~[q] -+ ~[q - 1], then 
the following commutes: 

7(~[q - 1],E) ~ 7E(q -1,1) 

7(~[q], E) 

(IV) For all X E A!T ,7(X ,E) -+ 7(X ,B) is a fibration. 
Proof. Statement II implies III since II is simply III reformulated via the defi-
nition 7(X, Y)p = (Mp] x X, Y). The manipulation 

7(X ,7(Y, Z)) ~ 7(Y ,7(X, Z)) 

for X, Y ,Z E A!T and Y a finite simplicial set, transforms III into IV. State-
ment IV implies I by taking X = pt. Thus it remains to verify that I implies 
II. 

Suppose p: E -+ B is a fibration with sections 

Aq.I: 7 E(q ,1)0 -+ (~[q] ,E). 

Suppose (u,v)E7E(q,I)p' u:~[p]x~[q]-+B, v:Mp]x~[q,/]-+E. We 
define Al ,p (u , v) : ~[p] x ~[q] -+ E by induction on q and then induction on p. 
For q = 0,7 E(q, I) is null since there are no I 's and hence AI,O is trivially 
defined. Suppose Al has been constructed for q - 1 satisfying (i)-(iv). For ,p 
q, let AI,O = Aq.I from above. Suppose AI,p_I has been defined. We wish to 
define W = Al ,p(u, v) so that W extends v, pw = u, w varies continuously 
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with (U. v) and it satisfies (i)-(iv). Let A[p] be the usual simplicial boundary 
of .1[p]. Using A[.P_I we extend v to 

Uo = (.1[p] x .1[q • I]) u (A[p] x .1[q]) 

so that it satisfies (i). We next choose an order, Y1 • Y2 • •• , • Yt of the nondegen-
erate p + q simplices of .1[p] x .1[q] and extend w over each Yi by induction 
on i using the sections A + [ for E -> B. The main technical difficulties p q. 
involved in this proof consist in choosing this order so that (i)-(iv) hold. We 
next define this order and prove three lemmas about it. 

Note that if (r. a) E (.1[p] x .1[q]) p+q is nondegenerate, a determines r. If 
a=(jo.i l •• ... i p+q) and r=(ko .... . kp+q),then ko=O, k i+1 =ki +l if 
i k +1 = ii+1 and k i+1 = k i if ii+1 = ii + 1. Let fJ denote this r, determined 
by a and let V; denote all p + q simplices a of .1[q] arising in this way, 
that is, all p + q simplices involving all of {O. 1 ..... q}. We define an order 
on {O. 1 ..... q} with respect to 1= (il . i2 ..... if) by writing it in the order 
(jo.i l • ••• • i q_,.i l .i2 • •••• i,), 0::; io < i l < ... < i q_, ::; q, it ¢:. I. 
Order the simplices in V; lexiographically with respect to the above I order 
on {O. 1 ..... q} and order the simplices (fJ. a), a E V; , according to the I 
order of a. We denote these orderings by "<[ ". 

Let l(i. a) be the integer l, where i, is the last occurrence of i in a. The 
following is trivial to check. 

Lemma 12.2. If a E V; • then 

(di x id)(fJ . a) = s,(o,fJ . o,a) . 

where 1= l(fJ . i). and 

(id x d)(fJ . a) = s,(o,difJ . oidia) . 

where l = I (a . i) . 

If a E V; , let T,a E V; be defined as follows: If i, = i, (i'_I' i, . i'+I) is 
one of (i. i . i) . (i - 1 . i. i) . (i . i. i + 1) or (i - 1 . i . i + 1) . Let ~a be formed 
from a by changing i, in the cases above, to i. i-I. i + 1 • i , respectively. 
Let 

I(a. J) = {IIT,(a) <[ a} u {llo,a E .1[q • I] or o,fJ E A[p]}. 

The second factor in this union is 

{ll~a = a and if i, ¢:. I. i'+1 = i,}. 

The proof of the following is a bit tedious but straightforward. 

Lemma 12.3. The set I(a. J) is nonnull and =I- (0.1 ..... p + q). If i or 
i + 1 E I. then l(a. i) or l(a. i) + 1 E I(a . J). If i and i + 1 ¢:. I. then 
s/(o,dia.J) = I(a .s/). where l = l(a. i). If l = l(fJ. i) and l and 1+1 ¢:. 
I(a. J). then s/(o,a. J) = I(a ,J). 
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For a simplex a, let Q denote the simplicial set of all faces and degeneracies 
of a. For a E V: ' let 

U~ = Ll[p] x Ll[q ,/] u (Ll[P] x Ll[q]) U U (a, a) , 

where the a's are in n: . We prove 
[ -A-- -A--

Lemma 12.4. Ua n (a , a) = UiE[(a.l) ai(a , a). 
Proof. Recall 1[a differs from a only in the 1 th place and hence a/(1[a) = 

a/a. Thus if T/(a) <[ a, then a/(a, a) E U~. The definition of I(a, I) 
thus shows that the right side of Lemma 12.4 is contained in the left side. 
Suppose (t, r) is a nondegenerate simplex in the left side of 12.4 and not the 
face of such a simplex. We show that (i, r) = ai(a , a) for some i E I(a , I). 
Suppose r E Ll[q , I]. Let the last occurrence of i l (I = (il ' i2 , ••. )) in a 
occur at I. Then r is a face of a/a and 1 E I(a , I) and hence r = a/a. 
Suppose r is a face of (a, a) E (ej(Ll[p - 1])) x Ll[q]. Let 1 be the last 
place at which j occurs in a. Then 1 E I(a, I) or 1 - 1 E I(a, I) and 
the I - 1 entry of a is also j. In either case r is a face of aia where 
i E I(a , I). Suppose r is a face of a' , a' <[ a and suppose r i= aia, all 
i E I(a , I). We show this leads to a contradiction which will complete the 
proof. Since r is a face of a, r = a. a. . .. a. a, jl < j2 < ... < j( and 

il i2 it 
js ¢. I(a, I), all s. Suppose j is the js entry of a and b is the js entry 
of a, i.e. (b, j) is the js vertex of (a, a). Since js ¢. I(a, I), the possible 
js-l,js,js+l vertices of (a,a) are (b,j-l),(b-j),(b,j+l)a, j ¢. 
I which we call type A,or (b-l,j),(b,j),(b,j+l), j ¢. I or j and 
j + 1 E I ; or (b, j - 1) , (b , j) , (b + 1, j), j - 1 E I and j ¢. I , which we call 
type B. Suppose j is the first occurrence of a type A situation; a. a omits s h 
all occurrences of j in a and (b, j - 1) is not omitted by a because it 

is-I 

cannotbeoftypeB.Hence (b,j-l) must be in (a',a') and jEa and thus 
(b , j) E (a' ,a') which contradicts the maximality of r. Hence there are no 
type A situations. Being all of type B implies that for all s, js+1 > js + 1 . But 
to form a' from r, each vertex omitted from a must be replaced by a vertex 
and the only possible replacements are bigger in the I order. Hence a' > a , a 
contradiction. 

We now return to defining w: Ll[p] x [q] -> E. We define wi Ua , a E V: 
by induction on the I order of V:. Suppose wlU has been defined. Let 
ha: Ll[p + q] -> Ll[p] x Ll[p] be the unique map such that ha(O, ... ,p + q) = 
(a , a). Let wi U a U (j be the unique map extending a wi U a and satisfying 

wha = A. p +q .I(a ,I)(uha , (wIUa)(haILl[p + q ,/(a ,I)])), 

Continuing by induction on a we obtain w: Ll[p] x Ll[q] -> E, which by con-
struction satisfies (i) and varies continuously with (u, v). Note that A.[ (u, v) ,p 
is continuous because its range and domain are subspaces of products of Bq's 
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and Eq 's and the maps are complicated combinations of the face and degener-
acy operations and the maps Aq.l from E ---+ B . 

We verify that w satisfies (ii)-(iv) on Vu by induction on 0". 

Proof of(ii). Consider 

u 

,1[p] x ,1[q ,I] 

1 1 1 
,1[p] x ,1[q] ,1[p - 1] x [q] u' --+B 

where v" = AI .p_1 (u' ,v'). We wish to show that if w is constructed from u = 
u' (dj x id) and v = v' (dj x id), then w = v" (dj x id). We show that 

by induction on 0". The first step in this induction is true because A I .p_1 

satisfies (ii). Suppose the above is true for Vu and 0"' is the successor of 0". 
Then Vu' = Vu u & and hence we must show that whu = v"(lj x id)hu' By 
Lemma 12.2, if / = /(& ,j), 

Hence 
whu = Ap+q .I(u .I/uhu' (wIVu)(huIMp + q, 1(0", I)])) 

= Ap+q .I(u .I)(u' hU,ud, ,v" hU,ud,I,1[p + q ,1(8, I)]). 

Suppose / or / + 1 E 1(0" ,I). Then 

Suppose / and / + 1 fI. 1(8, I). Then 

, " whu = As/I(u/u .I) (u hU,ud, ,v hU,ud,) 
, " 

= AI(u/u .I/u hU,u ,v hufU)d, 

= AI .p_1 (u' ,v')hu,ud, 

= v" (dj x id)hu' 
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The proof of (iii) follows the same line of argument as used for (ii) starting 
from the diagram 

V(1~ 

r~ 
~[p] x ~[q ,/] ---...l.... ~[p] x ~[q - 1] v' 

----+ E 

1 1 1 
~[p] x ~[q] ----+ ~[p] x ~[q - 1] ~ B 

where j or j + 1 E /. Let u = u' (id x d) and v = v' (id x d). We need to 
show that if w = AI .p(u, v), then 

wh(1 = v(id x d)h(J' 
(Again we use induction on (J.) Let I = 1((J, i). Then by Lemma 12.3 I or 
1+1 E /((J, I) and by Lemma 12.2 

Hence 
(id x d)h(1 = h(JA where (J' = o,(di(J)· 

wh(1 = AI((1./)(u' h(J,d, ,v' h(J,d,) 

= v' h(1,d, = v' (id x d)h(1' 

ProoJ oJ(iv). Here the diagram is as follows (j and j + 1 i s/) : 

V(1 ----+ ~[p] x ~[q - 1]~ 

r r v" 

v' 
~[p] X ~[q ,s/] ----+ ~[p] x ~[q - 1, /] ----+ E 

1 1 1 
~[p] x ~[q] idxd, u' 

----+ ~[p] x ~[q - 1] ----+ B 
Again, using Lemmas 12.2 and 12.3, one has 

wh(1 = AS1/ ((1' ./)(u' h(Jld, ,v' h(Jld,) 

= AI((JI .I)(u' h(J1 ,v' h(11 )d, 

= v" h(Jld, = v" (id x d)h(1' 

This completes the proof of Proposition 12.1. 
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