Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Continuous cohomology and real homotopy type


Authors: Edgar H. Brown and Robert H. Szczarba
Journal: Trans. Amer. Math. Soc. 311 (1989), 57-106
MSC: Primary 55N35; Secondary 55P62
DOI: https://doi.org/10.1090/S0002-9947-1989-0929667-6
MathSciNet review: 929667
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Various aspects of homotopy theory in the category of simplicial spaces are developed. Topics covered include continuous cohomology, continuous de Rham cohomology, the Kan extension condition, the homotopy relation, fibrations, the Serre spectral sequence, real homotopy type and its relation to graded commutative differential algebras over the reals.


References [Enhancements On Off] (What's this?)

  • [1] R. G. Bartle and L. M. Graves, Mappings between function spaces, Trans. Amer. Math. Soc. 72 (1952), 400-413. MR 0047910 (13:951i)
  • [2] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Princeton Univ. Press, Princeton, N.J., 1980. MR 554917 (83c:22018)
  • [3] A. K. Bousfield and V. K. A. M. Gugenheim, On PL de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. No. 179 (1976). MR 0425956 (54:13906)
  • [4] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin, 1972. MR 0365573 (51:1825)
  • [5] E. H. Brown and R. H. Szczarba, Continuous cohomology, Contemp. Math., vol. 58, Amer. Math. Soc., Providence, R.I., 1987, pp. 15-19. MR 893843
  • [6] P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. MR 0382702 (52:3584)
  • [7] A. Dold and D. Puppe, Homologie nicht-additiven Functoren, Anwendungen, Ann. Inst. Fourier (Grenoble) 11 (1961), 202-312. MR 0150183 (27:186)
  • [8] A. Haefliger, Feuilletages sur les variétés ouvertes, Topology 9 (1970), 183-194. MR 0263104 (41:7709)
  • [9] -, Homotopy and integrability, Manifolds (Amsterdam, 1970), Lecture Notes in Math., vol. 197, Springer-Verlag, 1970, pp. 133-163. MR 0285027 (44:2251)
  • [10] -, Cohomology of Lie algebras and foliations, Sympos. Differential and Algebraic Topology, Rio de Janeiro, Lecture Notes in Math., vol. 652, Springer-Verlag, 1976, pp. 1-12. MR 0501010 (58:18485)
  • [11] -, Differentiable cohomology, Cours donné au CIME, 1976.
  • [12] P. J. Hilton and S. Wylie, Homology theory, Cambridge Univ. Press, Cambridge, 1962.
  • [13] J. P. May, Simplicial objects in algebraic topology, Univ. of Chicago Press, Chicago, Ill., 1982. MR 1206474 (93m:55025)
  • [14] E. Michael, Selected-selection theorems, Amer. Math. Monthly 63 (1956), 233-238. MR 1529282
  • [15] J. Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430-436. MR 0077932 (17:1120a)
  • [16] M. A. Mostow, Continuous cohomology of spaces with two topologies, Mem. Amer. Math. Soc. No. 174 (1976). MR 0413132 (54:1253)
  • [17] D. G. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295. MR 0258031 (41:2678)
  • [18] G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105-112. MR 0232393 (38:718)
  • [19] -, Categories and cohomology theories, Topology 13 (1974), 293-312. MR 0353298 (50:5782)
  • [20] N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math. (2) 48 (1947), 290-320. MR 0022071 (9:154a)
  • [21] -, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133-152. MR 0210075 (35:970)
  • [22] W. Thurston, The theory of foliations in codimension greater than one, Comment. Math. Helv. 49 (1974), 214-231. MR 0370619 (51:6846)
  • [23] F. Treves, Topological vector spaces, distributions, and kernels, Academic Press, New York, 1967. MR 0225131 (37:726)
  • [24] W. T. Van Est, Group cohomology and Lie algebra cohomology in Lie groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 56 (1953), 484-492; 493-504. MR 0059285 (15:505b)
  • [25] J. L. Dupont, Simplicial de Rham cohomology and characteristic classes of flat bundles, Topology 15 (1976), 233-245. MR 0413122 (54:1243)
  • [26] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269-331. MR 0646078 (58:31119)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55N35, 55P62

Retrieve articles in all journals with MSC: 55N35, 55P62


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0929667-6
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society