Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Torsion points of generic formal groups

Authors: Michael Rosen and Karl Zimmermann
Journal: Trans. Amer. Math. Soc. 311 (1989), 241-253
MSC: Primary 14L05; Secondary 11S31
MathSciNet review: 974776
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F$ be a generic formal group of height $ h$ defined over $ A = {{\mathbf{Z}}_p}[[{t_1}, \ldots ,{t_{h - 1}}]]$. Let $ K$ be the quotient field of $ A$. We show the natural map $ {\rho _n}:{\text{Gal}}(K(\operatorname{ker} [{p^n}])/K) \to G{L_h}({\mathbf{Z}}/{p^n}{\mathbf{Z}})$ isomorphisms for all $ n \ge 1$ provided $ p \ne 2$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14L05, 11S31

Retrieve articles in all journals with MSC: 14L05, 11S31

Additional Information

PII: S 0002-9947(1989)0974776-9
Keywords: Generic formal group, Galois representation, local ring, Newton polygon
Article copyright: © Copyright 1989 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia