Conjugating homeomorphisms to uniform homeomorphisms
Authors:
Katsuro Sakai and Raymond Y. Wong
Journal:
Trans. Amer. Math. Soc. 311 (1989), 337356
MSC:
Primary 58D05; Secondary 57N20, 57S05, 58D15
MathSciNet review:
974780
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let denote the group of homeomorphisms of a metric space onto itself. We say that is conjugate to if for some . In this paper, we study the questions: When is conjugate to which is a uniform homeomorphism or can be extended to a homeomorphism on the metric completion of Typically for a complete metric space , we prove that is conjugate to a uniform homeomorphism if is uniformly approximated by uniform homeomorphisms. In case , we obtain a stronger result showing that every homeomorphism on is, in fact, conjugate to a smooth Lipschitz homeomorphis. For a noncomplete metric space , we provide answers to the existence of under several different settings. Our results are concerned mainly with infinitedimensional manifolds.
 [An]
R.
D. Anderson, Strongly negligible sets in
Fréchet manifolds, Bull. Amer. Math.
Soc. 75 (1969),
64–67. MR
0238358 (38 #6634), http://dx.doi.org/10.1090/S000299041969121464
 [AB]
R.
D. Anderson and R.
H. Bing, A complete elementary proof that
Hilbert space is homeomorphic to the countable infinite product of
lines, Bull. Amer. Math. Soc. 74 (1968), 771–792. MR 0230284
(37 #5847), http://dx.doi.org/10.1090/S000299041968120440
 [AK]
R.
D. Anderson and Nelly
Kroonenberg, Open problems in infinitedimensional topology,
Topological structures (Proc. Sympos. in honour of Johannes de Groot
(19141972), Amsterdam, 1973) Math. Centrum, Amsterdam, 1974,
pp. 141–175. Math. Centre Tracts, No. 52. MR 0358788
(50 #11247)
 [AM]
R.
D. Anderson and John
D. McCharen, On extending homeomorphisms to
Fréchet manifolds, Proc. Amer. Math.
Soc. 25 (1970),
283–289. MR 0258064
(41 #2711), http://dx.doi.org/10.1090/S00029939197002580645
 [BP]
Czesław
Bessaga and Aleksander
Pełczyński, Selected topics in infinitedimensional
topology, PWN—Polish Scientific Publishers, Warsaw, 1975.
Monografie Matematyczne, Tom 58. [Mathematical Monographs, Vol. 58]. MR 0478168
(57 #17657)
 [Br]
Morton
Brown, Some applications of an approximation
theorem for inverse limits, Proc. Amer. Math.
Soc. 11 (1960),
478–483. MR 0115157
(22 #5959), http://dx.doi.org/10.1090/S00029939196001151574
 [Ch]
T.
A. Chapman, Dense sigmacompact subsets of
infinitedimensional manifolds, Trans. Amer.
Math. Soc. 154
(1971), 399–426. MR 0283828
(44 #1058), http://dx.doi.org/10.1090/S00029947197102838287
 [Ch]
T.
A. Chapman, Lectures on Hilbert cube manifolds, American
Mathematical Society, Providence, R. I., 1976. Expository lectures from the
CBMS Regional Conference held at Guilford College, October 1115, 1975;
Regional Conference Series in Mathematics, No. 28. MR 0423357
(54 #11336)
 [Cu]
D. W. Curtis, Near homeomorphisms and fine homotopy equivalences, unpublished manuscript.
 [Cu]
D.
W. Curtis, Boundary sets in the Hilbert cube, Topology Appl.
20 (1985), no. 3, 201–221. MR 804034
(87d:57014), http://dx.doi.org/10.1016/01668641(85)900896
 [Fe]
Steve
Ferry, The homeomorphism group of a compact Hilbert cube manifold
is an 𝐴𝑁𝑅, Ann. of Math. (2)
106 (1977), no. 1, 101–119. MR 0461536
(57 #1521)
 [HW]
James
P. Henderson and John
J. Walsh, Examples of celllike decompositions of the
infinitedimensional manifolds 𝜎 and Σ, Topology Appl.
16 (1983), no. 2, 143–154. MR 712860
(85d:57013), http://dx.doi.org/10.1016/01668641(83)900147
 [KL]
A.
H. Kruse and P.
W. Liebnitz, An application of a family homotopy extension theorem
to 𝐴𝑁𝑅\ spaces, Pacific J. Math.
16 (1966), 331–336. MR 0195091
(33 #3296)
 [Sa]
Katsuro
Sakai, An embedding theorem of infinitedimensional manifold pairs
in the model space, Fund. Math. 100 (1978),
no. 1, 83–87. MR 0488069
(58 #7640)
 [Sa]
Katsuro
Sakai, A 𝑄manifold
localcompactification of a metric combinatorial ∞manifold,
Proc. Amer. Math. Soc. 100 (1987),
no. 4, 775–780. MR 894453
(88f:57026), http://dx.doi.org/10.1090/S00029939198708944536
 [Si]
L.
C. Siebenmann, Approximating cellular maps by homeomorphisms,
Topology 11 (1972), 271–294. MR 0295365
(45 #4431)
 [To]
H.
Toruńczyk, Characterizing Hilbert space topology, Fund.
Math. 111 (1981), no. 3, 247–262. MR 611763
(82i:57016)
 [To]
H.
Toruńczyk, A correction of two papers concerning Hilbert
manifolds: “Concerning locally homotopy negligible sets and
characterization of 𝑙₂manifolds” [Fund. Math. 101
(1978), no. 2, 93–110; MR0518344 (80g:57019)] and
“Characterizing Hilbert space topology” [ibid. 111 (1981), no.
3, 247–262; MR0611763 (82i:57016)], Fund. Math.
125 (1985), no. 1, 89–93. MR 813992
(87m:57017)
 [An]
 R. D. Anderson, Strongly negligible sets in Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), 6467. MR 0238358 (38:6634)
 [AB]
 R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771792. MR 0230284 (37:5847)
 [AK]
 R. D. Anderson and N. Kroonenberg, Open problems in infinitedimensional topology, Topological Structures, P. C. Baayen, ed., MCT 52, Math. Centrum, Amsterdam, 1974, pp. 141175. MR 0358788 (50:11247)
 [AM]
 R. D. Anderson and J. D. McCharen, On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. 25 (1970), 283289. MR 0258064 (41:2711)
 [BP]
 C. Bessaga and A. Pełczyński, Selected topics in infinitedimensional topology, MM 58, Polish Sci. Publ., Warsaw, 1975. MR 0478168 (57:17657)
 [Br]
 M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478483. MR 0115157 (22:5959)
 [Ch]
 T. A. Chapman, Dense sigmacompact subsets of infinitedimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399426. MR 0283828 (44:1058)
 [Ch]
 , Lectures on Hilbert cube manifolds, CBMS Regional Conf. Ser. in Math., no. 28, Amer. Math. Soc., Providence, R.I., 1976. MR 0423357 (54:11336)
 [Cu]
 D. W. Curtis, Near homeomorphisms and fine homotopy equivalences, unpublished manuscript.
 [Cu]
 , Boundary sets in the Hilbert cube, Topology Appl. 20 (1985), 201221. MR 804034 (87d:57014)
 [Fe]
 S. Ferry, The homeomorphism group of a compact Hilbert cube manifold is an ANR, Ann. of Math. (2) 106 (1977), 101119. MR 0461536 (57:1521)
 [HW]
 J. P. Henderson and J. J. Walsh, Examples of celllike decompositions of the infinitedimensional manifolds and , Topology Appl. 16 (1983), 143154. MR 712860 (85d:57013)
 [KL]
 A. H. Kruse and P. W. Liebnitz, An application of a family homotopy extension theorem to ANR spaces, Pacific J. Math. 16 (1966), 331336. MR 0195091 (33:3296)
 [Sa]
 K. Sakai, An embedding theorem of infinitedimensional manifold pairs in the model space, Fund. Math. 100 (1978), 8387. MR 0488069 (58:7640)
 [Sa]
 , A manifold localcompactification of a metric combinatorial manifold, Proc. Amer. Math. Soc. 100 (1987), 775780. MR 894453 (88f:57026)
 [Si]
 L. Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11 (1972), 271294. MR 0295365 (45:4431)
 [To]
 H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247262. MR 611763 (82i:57016)
 [To]
 , A correction of two papers concerning Hilbert manifolds, Fund. Math. 125 (1985), 8993. MR 813992 (87m:57017)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
58D05,
57N20,
57S05,
58D15
Retrieve articles in all journals
with MSC:
58D05,
57N20,
57S05,
58D15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198909747800
PII:
S 00029947(1989)09747800
Keywords:
Homeomorphism,
uniform homeomorphism,
conjugation
Article copyright:
© Copyright 1989
American Mathematical Society
