Conjugating homeomorphisms to uniform homeomorphisms

Authors:
Katsuro Sakai and Raymond Y. Wong

Journal:
Trans. Amer. Math. Soc. **311** (1989), 337-356

MSC:
Primary 58D05; Secondary 57N20, 57S05, 58D15

DOI:
https://doi.org/10.1090/S0002-9947-1989-0974780-0

MathSciNet review:
974780

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the group of homeomorphisms of a metric space onto itself. We say that is conjugate to if for some . In this paper, we study the questions: When is conjugate to which is a uniform homeomorphism or can be extended to a homeomorphism on the metric completion of Typically for a complete metric space , we prove that is conjugate to a uniform homeomorphism if is uniformly approximated by uniform homeomorphisms. In case , we obtain a stronger result showing that every homeomorphism on is, in fact, conjugate to a smooth Lipschitz homeomorphis. For a noncomplete metric space , we provide answers to the existence of under several different settings. Our results are concerned mainly with infinite-dimensional manifolds.

**[An]**R. D. Anderson,*Strongly negligible sets in Fréchet manifolds*, Bull. Amer. Math. Soc.**75**(1969), 64–67. MR**0238358**, https://doi.org/10.1090/S0002-9904-1969-12146-4**[AB]**R. D. Anderson and R. H. Bing,*A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines*, Bull. Amer. Math. Soc.**74**(1968), 771–792. MR**0230284**, https://doi.org/10.1090/S0002-9904-1968-12044-0**[AK]**R. D. Anderson and Nelly Kroonenberg,*Open problems in infinite-dimensional topology*, Topological structures (Proc. Sympos. in honour of Johannes de Groot (1914-1972), Amsterdam, 1973) Math. Centrum, Amsterdam, 1974, pp. 141–175. Math. Centre Tracts, No. 52. MR**0358788****[AM]**R. D. Anderson and John D. McCharen,*On extending homeomorphisms to Fréchet manifolds*, Proc. Amer. Math. Soc.**25**(1970), 283–289. MR**0258064**, https://doi.org/10.1090/S0002-9939-1970-0258064-5**[BP]**Czesław Bessaga and Aleksander Pełczyński,*Selected topics in infinite-dimensional topology*, PWN—Polish Scientific Publishers, Warsaw, 1975. Monografie Matematyczne, Tom 58. [Mathematical Monographs, Vol. 58]. MR**0478168****[Br]**Morton Brown,*Some applications of an approximation theorem for inverse limits*, Proc. Amer. Math. Soc.**11**(1960), 478–483. MR**0115157**, https://doi.org/10.1090/S0002-9939-1960-0115157-4**[Ch]**T. A. Chapman,*Dense sigma-compact subsets of infinite-dimensional manifolds*, Trans. Amer. Math. Soc.**154**(1971), 399–426. MR**0283828**, https://doi.org/10.1090/S0002-9947-1971-0283828-7**[Ch]**T. A. Chapman,*Lectures on Hilbert cube manifolds*, American Mathematical Society, Providence, R. I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975; Regional Conference Series in Mathematics, No. 28. MR**0423357****[Cu]**D. W. Curtis,*Near homeomorphisms and fine homotopy equivalences*, unpublished manuscript.**[Cu]**D. W. Curtis,*Boundary sets in the Hilbert cube*, Topology Appl.**20**(1985), no. 3, 201–221. MR**804034**, https://doi.org/10.1016/0166-8641(85)90089-6**[Fe]**Steve Ferry,*The homeomorphism group of a compact Hilbert cube manifold is an 𝐴𝑁𝑅*, Ann. of Math. (2)**106**(1977), no. 1, 101–119. MR**0461536**, https://doi.org/10.2307/1971161**[HW]**James P. Henderson and John J. Walsh,*Examples of cell-like decompositions of the infinite-dimensional manifolds 𝜎 and Σ*, Topology Appl.**16**(1983), no. 2, 143–154. MR**712860**, https://doi.org/10.1016/0166-8641(83)90014-7**[KL]**A. H. Kruse and P. W. Liebnitz,*An application of a family homotopy extension theorem to 𝐴𝑁𝑅 spaces*, Pacific J. Math.**16**(1966), 331–336. MR**0195091****[Sa]**Katsuro Sakai,*An embedding theorem of infinite-dimensional manifold pairs in the model space*, Fund. Math.**100**(1978), no. 1, 83–87. MR**0488069****[Sa]**Katsuro Sakai,*A 𝑄-manifold local-compactification of a metric combinatorial ∞-manifold*, Proc. Amer. Math. Soc.**100**(1987), no. 4, 775–780. MR**894453**, https://doi.org/10.1090/S0002-9939-1987-0894453-6**[Si]**L. C. Siebenmann,*Approximating cellular maps by homeomorphisms*, Topology**11**(1972), 271–294. MR**0295365**, https://doi.org/10.1016/0040-9383(72)90014-6**[To]**H. Toruńczyk,*Characterizing Hilbert space topology*, Fund. Math.**111**(1981), no. 3, 247–262. MR**611763****[To]**H. Toruńczyk,*A correction of two papers concerning Hilbert manifolds: “Concerning locally homotopy negligible sets and characterization of 𝑙₂-manifolds” [Fund. Math. 101 (1978), no. 2, 93–110; MR0518344 (80g:57019)] and “Characterizing Hilbert space topology” [ibid. 111 (1981), no. 3, 247–262; MR0611763 (82i:57016)]*, Fund. Math.**125**(1985), no. 1, 89–93. MR**813992**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58D05,
57N20,
57S05,
58D15

Retrieve articles in all journals with MSC: 58D05, 57N20, 57S05, 58D15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1989-0974780-0

Keywords:
Homeomorphism,
uniform homeomorphism,
conjugation

Article copyright:
© Copyright 1989
American Mathematical Society