Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Conjugating homeomorphisms to uniform homeomorphisms


Authors: Katsuro Sakai and Raymond Y. Wong
Journal: Trans. Amer. Math. Soc. 311 (1989), 337-356
MSC: Primary 58D05; Secondary 57N20, 57S05, 58D15
DOI: https://doi.org/10.1090/S0002-9947-1989-0974780-0
MathSciNet review: 974780
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ H(X)$ denote the group of homeomorphisms of a metric space $ X$ onto itself. We say that $ h \in H(X)$ is conjugate to $ g \in H(X)$ if $ {g = fhf^{-1}}$ for some $ f \in H(X)$. In this paper, we study the questions: When is $ h \in H(X)$ conjugate to $ g \in H(X)$ which is a uniform homeomorphism or can be extended to a homeomorphism $ \tilde{g}$ on the metric completion of $ X$ Typically for a complete metric space $ X$, we prove that $ h \in H(X)$ is conjugate to a uniform homeomorphism if $ H$ is uniformly approximated by uniform homeomorphisms. In case $ X = \mathbf{R}$, we obtain a stronger result showing that every homeomorphism on $ \mathbf{R}$ is, in fact, conjugate to a smooth Lipschitz homeomorphis. For a noncomplete metric space $ X$, we provide answers to the existence of $ \tilde{g}$ under several different settings. Our results are concerned mainly with infinite-dimensional manifolds.


References [Enhancements On Off] (What's this?)

  • [An] R. D. Anderson, Strongly negligible sets in Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), 64-67. MR 0238358 (38:6634)
  • [AB] R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771-792. MR 0230284 (37:5847)
  • [AK] R. D. Anderson and N. Kroonenberg, Open problems in infinite-dimensional topology, Topological Structures, P. C. Baayen, ed., MCT 52, Math. Centrum, Amsterdam, 1974, pp. 141-175. MR 0358788 (50:11247)
  • [AM] R. D. Anderson and J. D. McCharen, On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. 25 (1970), 283-289. MR 0258064 (41:2711)
  • [BP] C. Bessaga and A. Pełczyński, Selected topics in infinite-dimensional topology, MM 58, Polish Sci. Publ., Warsaw, 1975. MR 0478168 (57:17657)
  • [Br] M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478-483. MR 0115157 (22:5959)
  • [Ch$ _{1}$] T. A. Chapman, Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399-426. MR 0283828 (44:1058)
  • [Ch$ _{2}$] -, Lectures on Hilbert cube manifolds, CBMS Regional Conf. Ser. in Math., no. 28, Amer. Math. Soc., Providence, R.I., 1976. MR 0423357 (54:11336)
  • [Cu$ _{1}$] D. W. Curtis, Near homeomorphisms and fine homotopy equivalences, unpublished manuscript.
  • [Cu$ _{2}$] -, Boundary sets in the Hilbert cube, Topology Appl. 20 (1985), 201-221. MR 804034 (87d:57014)
  • [Fe] S. Ferry, The homeomorphism group of a compact Hilbert cube manifold is an ANR, Ann. of Math. (2) 106 (1977), 101-119. MR 0461536 (57:1521)
  • [HW] J. P. Henderson and J. J. Walsh, Examples of cell-like decompositions of the infinite-dimensional manifolds $ \sigma$ and $ \Sigma$, Topology Appl. 16 (1983), 143-154. MR 712860 (85d:57013)
  • [KL] A. H. Kruse and P. W. Liebnitz, An application of a family homotopy extension theorem to ANR spaces, Pacific J. Math. 16 (1966), 331-336. MR 0195091 (33:3296)
  • [Sa$ _{1}$] K. Sakai, An embedding theorem of infinite-dimensional manifold pairs in the model space, Fund. Math. 100 (1978), 83-87. MR 0488069 (58:7640)
  • [Sa$ _{2}$] -, A $ Q$-manifold local-compactification of a metric combinatorial $ \infty$-manifold, Proc. Amer. Math. Soc. 100 (1987), 775-780. MR 894453 (88f:57026)
  • [Si] L. Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11 (1972), 271-294. MR 0295365 (45:4431)
  • [To$ _{1}$] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262. MR 611763 (82i:57016)
  • [To$ _{2}$] -, A correction of two papers concerning Hilbert manifolds, Fund. Math. 125 (1985), 89-93. MR 813992 (87m:57017)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58D05, 57N20, 57S05, 58D15

Retrieve articles in all journals with MSC: 58D05, 57N20, 57S05, 58D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0974780-0
Keywords: Homeomorphism, uniform homeomorphism, conjugation
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society