Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Invariants of graphs in three-space


Author: Louis H. Kauffman
Journal: Trans. Amer. Math. Soc. 311 (1989), 697-710
MSC: Primary 57M25; Secondary 05C10
DOI: https://doi.org/10.1090/S0002-9947-1989-0946218-0
MathSciNet review: 946218
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By associating a collection of knots and links to a graph in three-dimensional space, we obtain computable invariants of the embedding type of the graph. Two types of isotopy are considered: topological and rigid-vertex isotopy. Rigid-vertex graphs are a category mixing topological flexibility with mechanical rigidity. Both categories constitute steps toward models for chemical and biological networks. We discuss chirality in both rigid and topological contexts.


References [Enhancements On Off] (What's this?)

  • [1] J. Boyle, Embedings of $ 2$-dimensional cell complexes in $ {S^3}$ determined by their $ 1$-skeletons, (preprint).
  • [2] J. H. Conway and C. McA. Gordon, Knots and links in spatial graphs, J. Graph Theory 7 (1983), 445-453. MR 722061 (85d:57002)
  • [3] P. Freyd, D. Yetter, J. Hoste, W. Lickorish, K. Millett and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), 239-246. MR 776477 (86e:57007)
  • [4] W. Graeub, Die semilinearen abbildungen, S. B. Heidelberger Akad. Wiss. Math.-Nat. Kl. (1950), 205-272. MR 0042709 (13:152a)
  • [5] V. F. R. Jones, A new polynomial invariant for links via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985), 103-112. MR 766964 (86e:57006)
  • [6] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 395-407. MR 899057 (88f:57006)
  • [7] -, New invariants in knot theory, Amer. Math. Monthly 95 (1988), 195-242. MR 935433 (89d:57005)
  • [8] -, On knots, Ann. of Math. Studies, no. 115. Princeton Univ. Press, 1987.
  • [9] -, An invariant of regular isotopy, Trans. Amer. Math. Soc. (to appear). MR 958895 (90g:57007)
  • [10] L. H. Kauffman and P. Vogel, Link polynomials and a graphical calculus (preprint 1987). U.R. Litherland, The Alexander module of a knotted theta-curve (to appear). MR 1155094 (92m:57012)
  • [12] K. Millett, Stereotopological indices for a family of chemical graphs, J. Comput. Chem. 8 (1987), 536-548. MR 892422 (89c:92104)
  • [13] K. Millett, B. Brandt and W. B. R. Lickorish, A polynomial invariant for unoriented knots and links, Invent. Math. 84 (1986), 563-573. MR 837528 (87m:57003)
  • [14] K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), 187-194. MR 895570 (88m:57010)
  • [15] K. Reidemeister, Knotentheorie, Ergebnisse der Matematik und ihrer Grenzgebiete, (Alte Folge), Band 1, Heft 1, Springer 1932; reprint, Springer-Verlag, 1974.
  • [16] -, Knot theory, Translated into English by L. Boron, C Christenson, and B. Smith, Univ. of Idaho, Moscow, Idaho, BCS Associates, 1983. MR 717222 (84j:57005)
  • [17] J. Simon, Topological chirality of certain molecules, Topology 25 (1986), 229-235. MR 837623 (87m:57007)
  • [18] -, Molecular graphs as topological objects in space, J. Comput. Chem. 8 (1987), 718-726. MR 891813 (89c:92107)
  • [19] M. Thistlethwaite, A spanning tree expansion for the Jones polynomial, Topology 26 (1987), 297-310. MR 899051 (88h:57007)
  • [20] K. Wolcott, The knotting of theta curves and other graphs in $ {S^3}$, Thesis, Univ. of Iowa, 1985.
  • [21] S. Yamada, An invariant of spatial graphs, (preprint 1987). MR 1016274 (90j:57004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M25, 05C10

Retrieve articles in all journals with MSC: 57M25, 05C10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0946218-0
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society