Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Regular coverings of homology $ 3$-spheres by homology $ 3$-spheres


Authors: E. Luft and D. Sjerve
Journal: Trans. Amer. Math. Soc. 311 (1989), 467-481
MSC: Primary 57N10; Secondary 57M10
DOI: https://doi.org/10.1090/S0002-9947-1989-0978365-1
MathSciNet review: 978365
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study $ 3$-manifolds that are homology $ 3$-spheres and which admit nontrivial regular coverings by homology $ 3$-spheres. Our main theorem establishes a relationship between such coverings and the canonical covering of the $ 3$-sphere $ {S^3}$ onto the dodecahedral space $ {D^3}$. We also give methods for constructing irreducible sufficiently large homology $ 3$-spheres $ \tilde M,\;M$ together with a degree $ 1$ map $ h:M \to {D^3}$ such that $ \tilde M$ is the covering space of $ M$ induced from the universal covering $ {S^3} \to {D^3}$ by means of the degree $ 1$ map $ h:M \to {D^3}$. Finally, we show that if $ p:\tilde M \to M$ is a nontrivial regular covering and $ \tilde M,\;M$ are homology spheres with $ M$ Seifert fibered, then $ \tilde M = {S^3}$ and $ M = {D^3}$.


References [Enhancements On Off] (What's this?)

  • [D] M. N. Dyer, Homotopy classification of $ (\pi ,\;m)$-complexes, J. Pure Appl. Algebra 7 (1976), 249-282. MR 0400215 (53:4050)
  • [Ha] J. Harer, Representing elements of $ {\pi _1}({M^3})$ by fibered knots, Math. Proc. Cambridge Philos. Soc. 92 (1982), 133-138. MR 662969 (83j:57005)
  • [He] J. Hempel, $ 3$-manifolds, Ann. of Math. Studies, no. 86, Princeton Univ. Press, 1976. MR 0415619 (54:3702)
  • [LS] E. Luft and D. Sjerve, $ 3$-manifolds with subgroups $ Z \otimes Z \otimes Z$ in their fundamental groups, Pacific J. Math. 114 (1984), 191-205. MR 755489 (86h:57013)
  • [MSY] W. Meeks III, L. Simon and S. T. Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. (2) 116 (1982), 621-653. MR 678484 (84f:53053)
  • [Ol] P. Olum, Mappings of manifolds and the notion of degree, Ann. of Math. (2) 58 (1953), 458-480. MR 0058212 (15:338a)
  • [O] P. Orlik, Seifert manifolds, Lecture Notes in Math., vol. 291, Springer-Verlag, Berlin and New York, 1972. MR 0426001 (54:13950)
  • [Pl] S. Plotnick, Homotopy equivalences and free modules, Topology 21 (1982), 91-99. MR 630883 (83a:55013)
  • [Ro] D. Rolfsen, Knots and links, Math. Lecture Series, no. 7, Publish or Perish, 1976. MR 0515288 (58:24236)
  • [S] H. Seifen, Topologie dreidimensionaler gefaserter Raüme, Acta Math. 60 (1933), 147-238; English translation in M. Seifert and W. Threlfall, A Textbook of Topology, Academic Press, 1980. MR 1555366
  • [Sj] D. Sjerve, Homology spheres which are covered by spheres, J. London Math. Soc. (2) 6 (1973), 333-336. MR 0310895 (46:9993)
  • [Sw $ _{1}$ ] R. G. Swan, Induced representations and projective modules, Ann. of Math. (2) 71 (1960), 552-578. MR 0138688 (25:2131)
  • [Sw $ _{2}$ ] -, Projective modules over binary polyhedral groups, J. Reine Angew. Math. 342 (1983), 66-172. MR 703486 (84j:16003)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57N10, 57M10

Retrieve articles in all journals with MSC: 57N10, 57M10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0978365-1
Keywords: Homology $ 3$-spheres, coverings, binary icosahedral group, dodecahedral space, degree $ 1$ maps
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society