Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Infix congruences on a free monoid


Author: C. M. Reis
Journal: Trans. Amer. Math. Soc. 311 (1989), 727-737
MSC: Primary 20M05
DOI: https://doi.org/10.1090/S0002-9947-1989-0978373-0
MathSciNet review: 978373
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A congruence $ \rho $ on a free monoid $ {X^{\ast}}$ is said to be infix if each class $ C$ of $ \rho $ satisfies $ u \in C$ and $ xuy \in C$ imply $ xy = 1$.

The main purpose of this paper is a characterization of commutative maximal infix congruences. These turn out to be congruences induced by homomorphisms $ \tau $ from $ {X^{\ast}}$ to $ {{\mathbf{N}}^0}$, the monoid of nonnegative integers under addition, with $ {\tau ^{ - 1}}(0) = 1$.


References [Enhancements On Off] (What's this?)

  • [1] S. Eilenberg, Automata, languages and machines, vol. A, Academic Press, 1974. MR 0530382 (58:26604a)
  • [2] Y. Q. Guo, H. J. Shyr and G. Thierrin, $ f$-disjunctive languages, Internat. J. Comput. Math. 18 (1986), 219-237.
  • [3] L. H. Haines, On free monoids partially ordered by embedding, J. Combin. Theory 6 (1969), 94-98. MR 0240016 (39:1370)
  • [4] J. L. Kelley and I. Namioka, Linear topological spaces, Van Nostrand, Princeton, N.J., 1963. MR 0166578 (29:3851)
  • [5] G. Lallement, Semigroups and combinatorial applications, Wiley, 1979. MR 530552 (81j:20082)
  • [6] C. M. Reis, A note on $ f$-disjunctive languages, Semigroup Forum 36 (1987), 159-165. MR 911052 (89b:68039)
  • [7] G. Thierrin and H. J. Shyr, Hypercodes, Inform. and Control 24 (1974), 45-54. MR 0345712 (49:10443)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20M05

Retrieve articles in all journals with MSC: 20M05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0978373-0
Keywords: Infix congruences, free monoid, commutative maximal infix congruences
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society