Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Quadrature and harmonic $ L\sp 1$-approximation in annuli


Authors: D. H. Armitage and M. Goldstein
Journal: Trans. Amer. Math. Soc. 312 (1989), 141-154
MSC: Primary 31B05; Secondary 41A30
DOI: https://doi.org/10.1090/S0002-9947-1989-0949896-5
MathSciNet review: 949896
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Open sets $ D$ in $ {R^N}\;(N \geq 3)$ with the property that $ \bar D$ is a closed annulus $ \{ x:{r_1} \leq \;\left\Vert x\right\Vert \; \leq {r_2}\} $ are characterized by quadrature formulae involving mean values of certain harmonic functions. One such characterization is used to give a criterion for the existence of a best harmonic $ {L^1}$ approximant to a function which is subharmonic (and satisfies some other conditions) in an annulus.


References [Enhancements On Off] (What's this?)

  • [1] Y. Avci, Characterization of shell domains by quadrature identities, J. London Math. Soc. (2) 23 (1981), 123-128. MR 602244 (82f:30041)
  • [2] A. Beardon, Integral means of subharmonic functions, Proc. Cambridge Philos. Soc. 69 (1971), 151-152. MR 0281937 (43:7651)
  • [3] R. Courant and D. Hilbert, Methods of mathematical physics, vol. 2, Interscience, New York, 1966. MR 0195654 (33:3852)
  • [4] J. Deny, Systèmes totaux de fonctions harmoniques, Ann. Inst. Fourier (Grenoble) 1 (1949), 103-113. MR 0037414 (12:258c)
  • [5] J. L. Doob, Classical potential theory and its probabilistic counterpart, Springer, New York and Berlin, 1983. MR 1814344 (2001j:31002)
  • [6] N. du Plessis, An introduction to potential theory, Oliver and Boyd, Edinburgh, 1970. MR 0435422 (55:8382)
  • [7] P. M. Gauthier, M. Goldstein and W. H. Ow, Uniform approximation on closed sets by harmonic functions with Newtonian singularities, J. London Math. Soc. (2) 28 (1983), 71-82. MR 703466 (84j:31009)
  • [8] M. Goldstein, W. Haussmann and K. Jetter, Best harmonic $ {L^1}$ approximation to subharmonic functions, J. London Math. Soc. (2) 30 (1984), 257-264. MR 771421 (86b:31002)
  • [9] M. Goldstein, W. Haussmann and L. Rogge, On the mean value property of harmonic functions and best harmonic $ {L^1}$-approximation, Trans. Amer. Math. Soc. 305 (1988), 505-515. MR 924767 (89d:31010)
  • [10] Ü. Kuran, On the mean value property of harmonic functions, Bull. London Math. Soc. 4 (1972), 311-312. MR 0320348 (47:8887)
  • [11] M. Sakai, Quadrature domains, Lecture Notes in Math., vol. 934, Springer, Berlin, 1982. MR 663007 (84h:41047)
  • [12] I. Singer, Best approximations in normed linear spaces by elements of linear subspaces, Springer, Berlin and New York, 1970. MR 0270044 (42:4937)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 31B05, 41A30

Retrieve articles in all journals with MSC: 31B05, 41A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0949896-5
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society