Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Rigidity for complete Weingarten hypersurfaces

Authors: M. Dajczer and K. Tenenblat
Journal: Trans. Amer. Math. Soc. 312 (1989), 129-140
MSC: Primary 53C42; Secondary 57R40
MathSciNet review: 956030
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We classify, locally and globally, the ruled Weingarten hypersurfaces of the Euclidean space. As a consequence of the local classification and a rigidity theorem of Dajczer and Gromoll, it follows that a complete Weingarten hypersurface which does not contain an open subset of the form $ {L^3} \times {{\mathbf{R}}^{n - 3}}$, where $ {L^3}$ is unbounded and $ n \geq 3$, is rigid.

References [Enhancements On Off] (What's this?)

  • [B] E. Beltrami, Risoluzione di un problema relativo alla teoria delle superficie gobbe, Ann. Mat. Pura Appl. 7 (1865), 139-150.
  • [BDJ] L. Barbosa, M. Dajczer and L. Jorge, Minimal ruled submanifolds in spaces of constant curvature, Indiana Univ. Math. J. 33 (1984), 531-547. MR 749313 (86g:53065)
  • [C] E. Cartan, La deformation des hypersurfaces dans l'espace euclidien réel e $ n$ dimensions, Bull. Soc. Math. France 44 (1916), 65-99. MR 1504750
  • [D] O. Dini, Sulle superficie gobbe nele quali uno dei due raggi di curvatura principale è una funzione dell'altro, Ann. Mat. Pura Appl. 7 (1865), 205-210.
  • [DG$ _{1}$] M. Dajczer and D. Gromoll, Gauss parametrizations and rigidity aspects of submanfolds, J. Differential Geometry 22 (1985), 1-12. MR 826420 (87g:53088a)
  • [DG$ _{2}$] -, Rigidity of complete, Euclidean hypersurfaces, Preprint.
  • [HN] P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959), 901-920. MR 0126812 (23:A4106)
  • [L] B. Lawson, Complete minimal surfaces in $ {S^3}$, Ann. of Math. 92 (1970), 335-374. MR 0270280 (42:5170)
  • [S] U. Sbrana, Sulle varietà ad $ n - 1$ dimensione deformabili nello spazio euclideo ad $ n$ dimensione, Rend. Circ. Mat. Palermo 27 (1909), 1-45.
  • [Sp] M. Spivak, A comprehensive introduction to differential geometry, Publish or Perish, 1979.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C42, 57R40

Retrieve articles in all journals with MSC: 53C42, 57R40

Additional Information

Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society