Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Cell-like mappings and nonmetrizable compacta of finite cohomological dimension


Authors: Sibe Mardešić and Leonard R. Rubin
Journal: Trans. Amer. Math. Soc. 313 (1989), 53-79
MSC: Primary 54F45; Secondary 54B25, 55M10
DOI: https://doi.org/10.1090/S0002-9947-1989-0962284-0
MathSciNet review: 962284
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Compact Hausdorff spaces $ X$ of cohomological dimension $ {\dim _Z}X \leq n$ are characterized as cell-like images of compact Hausdorff spaces $ Z$ with covering dimension $ Z \leq n$. The proof essentially uses the newly developed techniques of approximate inverse systems.


References [Enhancements On Off] (What's this?)

  • [1] A. N. Dranishnikov, On P. S. Aleksandrov's problem, Mat. Sb. 135 (4) (1988), 551-557. (Russian) MR 942139 (90e:55004)
  • [2] R. D. Edwards. A theorem and a question related to cohomological dimension and cell-like maps, Notices Amer. Math. Soc. 25 (1978), A-259.
  • [3] Y. Kodama, Note on cohomological dimension for noncompact spaces, J. Math. Soc. Japan 18 (1966), 343-359. MR 0203724 (34:3573)
  • [4] V. I. Kuz' minov, Homological dimension theory, Uspehi Mat. Nauk 23 (1968), no. 5(143), 3-49=Russian Math. Surveys 23 (1968), no. 5, 1-45. MR 0240813 (39:2158)
  • [5] S. Mardešić, Factorization theorems for cohomological dimension, Topology Appl. 30 (1988), 291-306. MR 972699 (90a:55004)
  • [6] S. Mardešić and L. R. Rubin, Approximate inverse systems of compacta and covering dimension, Pacific J. Math. (to appear). MR 992178 (90f:54058)
  • [7] S. Mardešić and J. Segal, Shape theory, North-Holland, Amsterdam, 1982. MR 676973 (84b:55020)
  • [8] -, $ \mathcal{P}$-like continua and approximate inverse limits, Math. Japon, (to appear). MR 975869 (90a:54024)
  • [9] -, Stability of almost commutative inverse systems of compacta, Topology Appl. (to appear). MR 997496 (90e:54018)
  • [10] -, Mapping approximate inverse systems of compacta, Fund. Math. (to appear). MR 1071261 (91h:54028)
  • [11] B. A. Pasynkov, On the absence of polyhedral spectra of bicompacta, Dokl. Akad. Nauk SSSR 142 (1962), 546-549. (Russian) MR 0133128 (24:A2962)
  • [12] -, On spectra and dimension of topological spaces, Mat. Sb. 57 (1962), 449-476. (Russian) MR 0144310 (26:1856)
  • [13] A. R. Pears, Dimension theory of general spaces, Cambridge Univ. Press, Cambridge, 1975. MR 0394604 (52:15405)
  • [14] L. R. Rubin and P. J. Schapiro, Cell-like maps onto noncompact spaces of finite cohomological dimension, Topology Appl. 27 (1987), 221-244. MR 918533 (89b:55002)
  • [15] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)
  • [16] J. J. Walsh, Dimension, cohomological dimension, and cell-like mappings, Shape Theory and Geometric Topology, Proc. Dubrovnik 1981, Lecture Notes in Math., vol. 870, Springer-Verlag, Berlin, 1981, pp. 105-118. MR 643526 (83a:57021)
  • [17] T. Watanabe, Approximate shape, I, Tsukuba J. Math. 11 (1987), 17-59. MR 899720 (88j:54013)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54F45, 54B25, 55M10

Retrieve articles in all journals with MSC: 54F45, 54B25, 55M10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0962284-0
Keywords: Cell-like map, cohomological dimension, covering dimension, approximate inverse system, inverse system, compact Hausdorff space
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society