Local smooth isometric embeddings of low-dimensional Riemannian manifolds into Euclidean spaces

Authors:
Gen Nakamura and Yoshiaki Maeda

Journal:
Trans. Amer. Math. Soc. **313** (1989), 1-51

MSC:
Primary 58G15; Secondary 35L99, 53C42

MathSciNet review:
992597

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Local smooth isometric embedding problems of low dimensional Riemannian manifolds into Euclidean spaces are studied. Namely, we prove the existence of a local smooth isometric embedding of a smooth Riemannian -manifold with nonvanishing curvature into Euclidean -space. For proving this, we give a local solvability theorem for a system of a nonlinear PDE of real principal type.

To obtain the local solvability theorem, we need a tame estimate for the linearized equation corresponding to the given PDE, which is presented by two methods. The first is based on the result of Duistermaat-Hörmander which constructed the exact right inverse for linear PDEs of real principal type by using Fourier integral operators. The second method uses more various properties of Fourier integral operators given by Kumano-go, which seems to be a simpler proof than the above.

**[BGY]**Robert L. Bryant, Phillip A. Griffiths, and Deane Yang,*Characteristics and existence of isometric embeddings*, Duke Math. J.**50**(1983), no. 4, 893–994. MR**726313**, 10.1215/S0012-7094-83-05040-8**[D]**J. J. Duistermaat,*Fourier integral operators*, Courant Institute of Mathematical Sciences, New York University, New York, 1973. Translated from Dutch notes of a course given at Nijmegen University, February 1970 to December 1971. MR**0451313****[DH]**J. J. Duistermaat and L. Hörmander,*Fourier integral operators. II*, Acta Math.**128**(1972), no. 3-4, 183–269. MR**0388464****[DY]**Dennis DeTurck and Deane Yang,*Local existence of smooth metrics with prescribed curvature*, Nonlinear problems in geometry (Mobile, Ala., 1985) Contemp. Math., vol. 51, Amer. Math. Soc., Providence, RI, 1986, pp. 37–43. MR**848931**, 10.1090/conm/051/848931**[E]**Ju. V. Egorov,*Canonical transformations and pseudodifferential operators*, Trudy Moskov. Mat. Obšč.**24**(1971), 3–28 (Russian). MR**0361929****[GY]**J. B. Goodman and D. Yang,*Local solvability of nonlinear partial differential equations of real principal type*(to appear).**[H]**Lars Hörmander,*Fourier integral operators. I*, Acta Math.**127**(1971), no. 1-2, 79–183. MR**0388463****[H1]**Lars Hörmander,*The analysis of linear partial differential operators. IV*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 275, Springer-Verlag, Berlin, 1985. Fourier integral operators. MR**781537****[J]**H. Jacobowitz,*Local isometric embeddings*, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 381–393. MR**645749****[K]**H. Kumano-go,*Pseudo-differential operators*, MIT Press, Cambridge, Mass., 1981.**[L]**C. S. Lin,*The local isometric embedding**of two dimensional Riemannian manifolds with Gaussian curvature changing sign cleanly*, Ph.D. dissertation, Courant Institute, 1983.**[M]**Sigeru Mizohata,*The theory of partial differential equations*, Cambridge University Press, New York, 1973. Translated from the Japanese by Katsumi Miyahara. MR**0599580****[OMY1]**Hideki Omori, Yoshiaki Maeda, and Akira Yoshioka,*On regular Fréchet-Lie groups. I. Some differential geometrical expressions of Fourier integral operators on a Riemannian manifold*, Tokyo J. Math.**3**(1980), no. 2, 353–390. MR**605098**, 10.3836/tjm/1270473002**[OMY2]**Hideki Omori, Yoshiaki Maeda, and Akira Yoshioka,*On regular Fréchet-Lie groups. II. Composition rules of Fourier-integral operators on a Riemannian manifold*, Tokyo J. Math.**4**(1981), no. 2, 221–253. MR**646038**, 10.3836/tjm/1270215153**[OMYK3]**Hideki Omori, Yoshiaki Maeda, Akira Yoshioka, and Osamu Kobayashi,*On regular Fréchet-Lie groups. III. A second cohomology class related to the Lie algebra of pseudodifferential operators of order one*, Tokyo J. Math.**4**(1981), no. 2, 255–277. MR**646039**, 10.3836/tjm/1270215154**[OMYK4]**Hideki Omori, Yoshiaki Maeda, Akira Yoshioka, and Osamu Kobayashi,*On regular Fréchet-Lie groups. IV. Definition and fundamental theorems*, Tokyo J. Math.**5**(1982), no. 2, 365–398. MR**688131**, 10.3836/tjm/1270214899**[OMYK5]**Hideki Omori, Yoshiaki Maeda, Akira Yoshioka, and Osamu Kobayashi,*On regular Fréchet-Lie groups. V. Several basic properties*, Tokyo J. Math.**6**(1983), no. 1, 39–64. MR**707838**, 10.3836/tjm/1270214325**[OMYK6]**Akira Yoshioka, Yoshiaki Maeda, Hideki Omori, and Osamu Kobayashi,*On regular Fréchet-Lie groups. VII. The group generated by pseudodifferential operators of negative order*, Tokyo J. Math.**7**(1984), no. 2, 315–336. MR**776942**, 10.3836/tjm/1270151730**[OMYK7]**Yoshiaki Maeda, Hideki Omori, Osamu Kobayashi, and Akira Yoshioka,*On regular Fréchet-Lie groups. VIII. Primordial operators and Fourier integral operators*, Tokyo J. Math.**8**(1985), no. 1, 1–47. MR**800075**, 10.3836/tjm/1270151569**[S]**Francis Sergeraert,*Une généralisation du théorème des fonctions implicites de Nash*, C. R. Acad. Sci. Paris Sér. A-B**270**(1970), A861–A863 (French). MR**0259699****[T]**François Trèves,*Linear partial differential equations with constant coefficients: Existence, approximation and regularity of solutions*, Mathematics and its Applications, Vol. 6, Gordon and Breach Science Publishers, New York-London-Paris, 1966. MR**0224958****[Y]**S. T. Yau,*Seminar on differential geometry*, Ann. of Math. Stud., no. 102, Princeton Univ. Press, 1982.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58G15,
35L99,
53C42

Retrieve articles in all journals with MSC: 58G15, 35L99, 53C42

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1989-0992597-8

Article copyright:
© Copyright 1989
American Mathematical Society