Braids, link polynomials and a new algebra

Authors:
Joan S. Birman and Hans Wenzl

Journal:
Trans. Amer. Math. Soc. **313** (1989), 249-273

MSC:
Primary 57M25; Secondary 17B99, 20F36

DOI:
https://doi.org/10.1090/S0002-9947-1989-0992598-X

MathSciNet review:
992598

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A class function on the braid group is derived from the Kauffman link invariant. This function is used to construct representations of the braid groups depending on parameters. The decomposition of the corresponding algebras into irreducible components is given and it is shown how they are related to Jones' algebras and to Brauer's centralizer algebras.

**[Al]**J. W. Alexander,*A lemma on systems of knotted curves*, Proc. Nat. Acad. Sci. U.S.A.**9**(1923), 93-95.**[Ar]**E. Artin,*Theorie der Zopfe*, Hamburg Abh.**4**(1925), 47-72.**[Bi]**J. S. Birman,*Braids, links and mapping class groups*, Ann. of Math. Studies, no. 82, Princeton Univ. Press, 1974. MR**0375281 (51:11477)****[B-L-M]**R. Brandt, W. B. R. Lickorish and K. Millett,*A polynomial invariant for unoriented knots and links*, preprint. MR**837528 (87m:57003)****[Bo]**Claude Bourin, Unpublished notes.**[Br]**R. Brauer,*On algebras which are connected with the semisimple continuous groups*, Ann. of Math.**38**(1937), 857-872. MR**1503378****[FYHLMO]**P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millett, and A. Ocneanu,*A new polynomial invariant of knots and links*, Bull. Amer. Math. Soc. (N.S.)**12**(1985), 239-246. MR**776477 (86e:57007)****[H]**J. Hoste,*A polynomial invariant of knots and links*, Pacific J. Math.**124**(1986), 295-320. MR**856165 (88d:57004)****[J,1]**V. F. R. Jones,*Index for subfactors*, Invent. Math.**72**(1983), 1-25. MR**696688 (84d:46097)****[J,2]**-,*Braid groups, Hecke algebras and type*II*factors*, Geometric Methods in Abstract Algebras, Proc. U.S.-Japan Symposium, Wiley, 1986, pp. 242-273.**[J,3]**-,*A polynomial invariant for knots via Von Neumann algebras*, Bull. Amer. Math. Soc. (N.S.)**12**(1985), 103-111. MR**766964 (86e:57006)****[J,4]**-,*Hecke algebra representations of braid groups and link polynomials*, Ann. of Math.**126**(1987), 335-388. MR**908150 (89c:46092)****[K,1]**L. Kauffman,*An invariant of regular isotopy*, preprint. MR**958895 (90g:57007)****[K,2]**-,*A states model for the Jones polynomial*, Topology**26**(1987), 395-407.**[K,3]**-,*Sign and space*:*knots and physics*, Lecture Notes, Torino.**[Ki]**M. Kidwell,*On the dimension of the Birman-Wenzl algebra*, Unpublished notes.**[La]**S. Lang,*Algebra*, Addison-Wesley, 1965. MR**0197234 (33:5416)****[L-M]**W. B. R. Lickorish and K. Millett,*A polynomial invariant of oriented links*, Topology**26**(1987), 107-141. MR**880512 (88b:57012)****[Li]**W. B. R. Lickorish,*A relationship between link polynomials*, Math. Proc. Cambridge Philos. Soc.**100**(1986), 109-112. MR**838656 (87g:57010)****[Lu]**George Lusztig,*On a theorem of Benson and Curtis*, J. Algebra**71**(1981). MR**630610 (83a:20053)****[M]**J. Murakami,*The Kauffman polynomial of links and representation theory*, Osaka J. Math.**24**(1987), 745-758. MR**927059 (89c:57007)****[M-S]**H. Morton and H. B. Short,*Calculating the*-*variable polynomial for knots presented as closed braids*, preprint.**[M-T]**H. Morton and P. Traczyk,*Knots, skeins and algebras*, preprint.**[O]**A. Ocneanu,*A polynomial invariant for knots; a combinatorial and algebraic approach*, preprint.**[S]**S. Sundaram,*On the combinatorics of representations of*, Mem. Amer. Math. Soc. (to appear). MR**1310588 (96f:05193)****[W,1]**H. Wenzl,*Representations of Hecke algebras and subfactors*, Invent. Math.**24**(1988), 349-383. MR**936086 (90b:46118)****[W,2]**-,*On the structure of Brauer's centralizer algebras*, Ann. of Math.**128**(1988), 179-193.**[Y]**David Yetter, Private correspondence with the first author.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57M25,
17B99,
20F36

Retrieve articles in all journals with MSC: 57M25, 17B99, 20F36

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1989-0992598-X

Article copyright:
© Copyright 1989
American Mathematical Society