Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Cyclic extensions of $ K(\sqrt{-1})/K$


Authors: Jón Kr. Arason, Burton Fein, Murray Schacher and Jack Sonn
Journal: Trans. Amer. Math. Soc. 313 (1989), 843-851
MSC: Primary 12F10; Secondary 11R20
DOI: https://doi.org/10.1090/S0002-9947-1989-0929665-2
MathSciNet review: 929665
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the height $ {\text{ht}}(L/K)$ of a cyclic $ 2$-extension of a field $ K$ of characteristic $ \ne 2$ is studied. Here $ {\text{ht}}(L/K) \geq n$ means that there is a cyclic extension $ E$ of $ K,E \supset L$, with $ [E:L] = {2^n}$. Necessary and sufficient conditions are given for $ {\text{ht}}(L/K) \geq n$ provided $ K(\sqrt { - 1})$ contains a primitive $ {2^n}$th root of unity. Primary emphasis is placed on the case $ L = K(\sqrt { - 1})$. Suppose $ {\text{ht}}(K(\sqrt { - 1})/K) \geq 1$. It is shown that $ {\text{ht}}(K(\sqrt { - 1})/K) \geq 2$ and if $ K$ is a number field then $ {\text{ht}}(K(\sqrt { - 1})/K) \geq n$ for all $ n$. For each $ n \geq 2$ an example is given of a field $ K$ such that $ {\text{ht}}(K(\sqrt { - 1})/K) \geq n$ but $ {\text{ht}}(K(\sqrt { - 1})/K) \ngeq n + 1$.


References [Enhancements On Off] (What's this?)

  • [1] A. A. Albert, Modern higher algebra, Univ. of Chicago Press, Chicago, 1937.
  • [2] E. Artin and J. Tate, Class field theory, Benjamin, New York, 1967. MR 0223335 (36:6383)
  • [3] F. Bertrandias and J.-J. Payan, $ \Gamma $-Extensions et invariants cyclotomiques, Ann. Sci. École Norm. Sup. (4) 5 (1972), 517-543. MR 0337882 (49:2651)
  • [4] J. E. Carroll, On determining the quadratic subfields of $ {Z_2}$-extensions of complex quadratic fields, Compositio Math. 30 (1975), 259-271. MR 0374082 (51:10282)
  • [5] J. E. Carroll and H. Kisilevsky, Initial layers of $ {Z_l}$-extensions of complex quadratic fields, Compositio Math. 32 (1976), 157-168. MR 0406970 (53:10755)
  • [6] B. Fein, B. Gordon, and J. Smith, On the representation of $ - 1$ as a sum of two squares in an algebraic number field, J. Number Theory 3 (1971), 310-315. MR 0319940 (47:8481)
  • [7] I. Reiner, Maximal orders, Academic Press, New York, 1975. MR 0393100 (52:13910)
  • [8] O. Schilling, The theory of valuations, Math. Surveys, no. 4, Amer. Math. Soc., Providence, R.I., 1950. MR 0043776 (13:315b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 12F10, 11R20

Retrieve articles in all journals with MSC: 12F10, 11R20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0929665-2
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society