Superprocesses and their linear additive functionals

Author:
E. B. Dynkin

Journal:
Trans. Amer. Math. Soc. **314** (1989), 255-282

MSC:
Primary 60J80; Secondary 60G57, 60H05, 60J55

DOI:
https://doi.org/10.1090/S0002-9947-1989-0930086-7

MathSciNet review:
930086

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a measure-valued stochastic process. Linear functionals of are the elements of the minimal closed subspace of which contains all with . Various classes of -valued additive functionals are investigated for measure-valued Markov processes introduced by Watanabe and Dawson. We represent such functionals in terms of stochastic integrals and we derive integral and differential equations for their Laplace transforms. For an important particular case--"weighted occupation times"--such equations have been established earlier by Iscoe.

We consider Markov processes with nonstationary transition functions to reveal better the principal role of the backward equations. This is especially helpful when we derive the formula for the Laplace transforms.

**[D]**A. Dawson (1975),*Stochastic evolution equations and related measure processes*, J. Multivariate Anal.**3**, 1-52. MR**0388539 (52:9375)****1.**-(1977),*The critical measure diffusion process*, Z. Wahrsch. Verw. Gebiete**40**, 125-145. MR**0478374 (57:17857)****[C]**Dellacherie (1972),*Capacités et processus stochastiques*, Springer-Verlag, Berlin, Heidelberg and New York. MR**0448504 (56:6810)****[C]**Dellacherie and P. A. Meyer (1983),*Probabilités et potentiel*:*Théorie discrète du potentiel*, Hermann, Paris. MR**0488194 (58:7757)****[E]**B. Dynkin (1960),*Theory of Markov processes*, Pergamon Press, Oxford, London, New York and Paris. MR**0131900 (24:A1747)****2.**-(1972),*Integral representation of excessive measures and excessive functions*, Uspekhi Mat. Nauk**28**, 36-64. Reprinted in London Mathematical Society Lecture Notes Series 54, pp. 145-186, Cambridge Univ. Press, London and New York. MR**0405602 (53:9394)****3.**-(1978),*Sufficient statistics and extreme points*, Ann. Probab.**6**, 706-736. MR**0518321 (58:24575)****4.**-(1988),*Representation for functionals of superprocesses by multiple stochastic integrals, with applications to self-intersection local times*, Astérisque**157-158**, 147-171. MR**976217 (90b:60103)****[E]**B. Dynkin and S. E. Kuznetsov (1974),*Determining functions of Markov processes and corresponding dual regular classes*, Soviet Math. Dokl.**15**, 20-23.**[I]**Iscoe (1986),*A weighted occupation time for a class of measure-valued branching processes*, Probab. Theory Related Fields**71**, 85-116. MR**814663 (87c:60070)****5.**-(1986a),*Ergodic theory and local occupation time for measure-valued critical branching Brownian motion*, Stochastics**18**, 197-243.**[P]**-A. Meyer (1968),*Probability and potential*, Blaisdell, Waltham, Mass., Toronto and London.**[S]**Roelly-Coppoletta (1986),*A criterion of convergence of measure-valued processes*:*application to measure branching processes*, Stochastics**17**, 43-65. MR**878553 (88i:60132)****[S]**Watanabe (1968),*A limit theorem of branching processes and continuous state branching processes*, J. Math. Kyoto Univ.**8**, 141-167. MR**0237008 (38:5301)****[J]**B. Walsh (1986),*An introduction to stochastic partial differential equations*, École d'Été de Probabilités de Saint-Flour XIV-1984, Lecture Notes in Math., vol. 1180, Springer, Berlin, Heidelberg, New York and Tokyo, pp. 266-437. MR**876085 (88a:60114)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
60J80,
60G57,
60H05,
60J55

Retrieve articles in all journals with MSC: 60J80, 60G57, 60H05, 60J55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1989-0930086-7

Keywords:
Measure-valued Markov processes,
additive funtionals,
stochastic integrals

Article copyright:
© Copyright 1989
American Mathematical Society