Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Propagation of $ L\sp q\sb k$-smoothness for solutions of the Euler equation

Author: Gustavo Ponce
Journal: Trans. Amer. Math. Soc. 314 (1989), 51-61
MSC: Primary 35B65; Secondary 35Q10, 76C10
MathSciNet review: 937250
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The motion of an ideal incompressible fluid is described by a system of partial differential equations known as the Euler equation. Considering the initial value problem for this equation, we prove that in a classical solution the $ L_k^q$-regularity of the data propagates along the fluid lines. Our method consists of combining properties of the $ \varepsilon $-approximate solution with $ {L^q}$-energy estimates and simple results of classical singular integral operators. In particular, for the two-dimensional case we present an elementary proof.

References [Enhancements On Off] (What's this?)

  • [1] S. Alinhac and G. Métivier, Propagation de l'analyticité locale pour les solutions de l'équation d'Euler, Arch. Rational Mech. Anal. 92 (1986), 287-296. MR 823119 (87h:35013)
  • [2] M. S. Baouendi and C. Goulaouic, Solutions analytiques de l'équation d'Euler d'un fluide incompressible, Seminaire Goulaouic-Schwartz 76-77, no. 22, École Polytechnique, Paris.
  • [3] C. Bardos, Analyticité de la solution de l'équation d'Euler dans un ouvert de $ {{\mathbf{R}}^n}$, C. R. Acad. Sci. Paris 283 (1976), 255-258. MR 0425393 (54:13349)
  • [4] C. Bardos, S. Benachour, and M. Zerner, Analyticité des solutions périodiques de l'équation d'Euler en dimension deux, C. R. Acad. Sci. Paris 282 (1976), 995-998. MR 0410094 (53:13844)
  • [5] S. Benachour, Analyticité de solutions périodiques de l'équation d'Euler en dimension trois, C. R. Acad. Sci. Paris 283 (1976), 107-110. MR 0425323 (54:13279)
  • [6] J. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A 278 (1975), 555-601. MR 0385355 (52:6219)
  • [7] J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non-linéaires, Ann. Sci. École Norm. Sup. 14 (1981), 209-246. MR 631751 (84h:35177)
  • [8] J. M. Delort, Estimations fines pour des opérateurs pseudo-différentiels analytiques sur un ouvert A bord de $ {{\mathbf{R}}^n}$ , application aux équations d'Euler, Comm. Partial Differential Equations 10 (1985), 1465-1525. MR 812340 (87m:58162)
  • [9] L. Hörmander, On the existence and the regularity of solutions of lienar pseudo-differential equations, Enseign. Math. 17 (1971), 99-163. MR 0331124 (48:9458)
  • [10] T. Kato and G. Ponce, Well-posedness of the Euler and Navier-Stokes equations in Lebesgue spaces, Rev. Mat. Iberoamer. 2 (1986), 73-88. MR 864654 (88a:35189)
  • [11] -, On non-stationary flows of viscous and ideal fluids in $ L_s^p({{\mathbf{R}}^2})$, Duke Math. J. 55 (1987), 487-499.
  • [12] -, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), 891-907. MR 951744 (90f:35162)
  • [13] E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970. MR 0290095 (44:7280)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35B65, 35Q10, 76C10

Retrieve articles in all journals with MSC: 35B65, 35Q10, 76C10

Additional Information

Keywords: Euler equations, $ \varepsilon $-approximate solutions, $ {L^q}$-energy estimates
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society