Singular relaxation moduli and smoothing in three-dimensional viscoelasticity

Authors:
Wolfgang Desch and Ronald Grimmer

Journal:
Trans. Amer. Math. Soc. **314** (1989), 381-404

MSC:
Primary 73F15; Secondary 45K05, 45N05, 47D05, 47G05

DOI:
https://doi.org/10.1090/S0002-9947-1989-0939803-3

MathSciNet review:
939803

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We develop a semigroup setting for linear viscoelasticity in three-dimensional space with tensor-valued relaxation modulus and give a criterion on the relaxation kernel for differentiability and analyticity of the solutions. The method is also extended to a simple problem in thermoviscoelasticity.

**[1]**J. Achenbach and D. Reddy,*Note on wave propagation in linearly viscoelastic media*, Z. Angew. Math. Phys.**18**(1967), 141-144.**[2]**R. L. Bagley and P. J. Torvik,*Fractional calculus, a different approach to viscoelastically damped structures*, AIAA J.**21**(1983), 741-748.**[3]**M. Caputo and F. Mainardi,*Linear models of dissipation in anelastic solids*, Riv. Nuovo Cimento (2)**1**(1971), 161-198.**[4]**G. Chen and R. C. Grimmer,*Semigroups and integral equations*, J. Integral Equations**2**(1980), 133-154. MR**572484 (81f:45026)****[5]**R. M. Christensen,*Theory of viscoelasticity. An introduction*, 2nd ed., Academic Press, 1982.**[6]**B. T. Chu,*Stress waves in isotropic linear viscoelastic materials*, J. Mécanique**1**(1962), 439-462. MR**0149753 (26:7238)****[7]**B. D. Coleman and M. E. Gurtin,*Waves in materials with memory*II.*On the growth and decay of one-dimensional acceleration waves*, Arch. Rational Mech. Anal.**19**(1965), 239-265. MR**0195336 (33:3538)****[8]**C. M. Dafermos,*Contraction semigroups and trend to equilibrium in continuum mechanics*, IUTAM/IMU Sympos. on Applications of Methods of Functional Analysis to Problems in Mechanics (P. Germain and P. Nayroles, eds.), Lecture Notes in Math., vol. 503, Springer, Berlin, 1976. MR**0521351 (58:25196)****[9]**W. Desch and R. C. Grimmer,*Propagation of singularities for integrodifferential equations*, J. Differential Equations**65**(1986), 411-426. MR**865070 (88b:45013)****[10]**-,*Initial-boundary value problems for integrodifferential equations*, J. Integral Equations**10**(1985), 73-97. MR**831236 (87f:45025)****[11]**-,*Smoothing properties of linear Volterra integrodifferential equations*, SIAM J. Math. Anal.**20**(1989), 116-132. MR**977492 (89m:45014)****[12]**W. Desch, R. C. Grimmer, and W. Schappacher,*Propagation of singularities by solutions of second order integrodifferential equations*(to appear).**[13]**W. Desch and R. K. Miller,*Exponential stabilization of Volterra integral equations with singular kernels*(in preparation).**[14]**J. D. Ferry,*Viscoelastic properties of polymers*, 2nd ed., Wiley, New York, 1970.**[15]**Y. C. Fung,*A first course in continuum mechanics*, 2nd ed., Prentice-Hall, Englewood Cliffs, N. J., 1977.**[16]**V. Girault and P. A. Raviart,*Finite element methods for Navier-Stokes equations. Theory and algorithms*, Springer, Berlin, 1986. MR**851383 (88b:65129)****[17]**D. Gram,*Mathematical models and waves in linear viscoelasticity*, Wave Propagation in Viscoelastic Media (F. Mainardi, ed.), Res. Notes in Math., 52, Pitman, London, 1982, pp. 1-27.**[18]**R. C. Grimmer and A. J. Pritchard,*Analytic resolvent operators for integral equations in Banach space*, J. Differential Equations**50**(1983), 234-259. MR**719448 (85k:45023)****[19]**K. Hannsgen and R. L. Wheeler,*Behavior of the solution of a Volterra equation as a parameter tends to infinity*, J. Integral Equations**7**(1984), 229-237. MR**770149 (86b:45004)****[20]**K. Hannsgen, Y. Renardy, and R. L. Wheeler,*Effectiveness and robustness with respect to time delays of boundary feedback stabilization in one-dimensional viscoelasticity*, SIAM J. Control Optim.**26**(1988), 1200-1234. MR**957661 (89k:93165)****[21]**W. J. Hrusa and M. Renardy,*On wave propagation in linear viscoelasticity*, Quart. Appl. Math.**43**(1985), 237-254. MR**793532 (86j:45022)****[22]**J. A. Hudson,*The excitation and propagation of elastic waves*, Cambridge Univ. Press, London, 1980. MR**572263 (81h:73001)****[23]**J. Kazakia and R. S. Rivlin,*Run-up and spin-up in a viscoelastic fluid*I, Rheol. Acta**20**(1981), 111-127.**[24]**R. K. Miller,*Volterra integral equations in a Banach space*, Funkcial. Ekvac.**18**(1975), 163-194. MR**0410312 (53:14062)****[25]**A. Narain and D. D. Joseph,*Linearlized dynamics for step jumps in velocity and displacement of shearing flows of a simple fluid*, Rheol. Acta**21**(1982), 228-250. MR**669373 (83j:76006)****[26]**-,*Classification of linear viscoelastic solids based on a failure criterion*, J. Elasticity**14**(1984), 19-26. MR**739116 (85f:73048)****[27]**A. Pazy,*On the differentiability and compactness of semigroups of linear operators*, J. Math. Mech.**17**(1968), 1131-1141. MR**0231242 (37:6797)****[28]**-,*Semigroups of linear operators and applications to linear partial differential equations*, Springer, Berlin, 1983.**[29]**J. Prüss,*Positivity and regularity of hyperbolic Volterra equations in Banach spaces*, Math. Ann.**279**(1987), 317-344. MR**919509 (89h:45004)****[30]**-,*Regularity and integrability of resolvents of linear Volterra equations*, Proc. Conf. on Volterra Integral Equations in Banach Spaces and Applications, Trento, 1987 (to appear).**[31]**M. Renardy,*Some remarks on the propagation and nonpropagation of discontinuities in linearly viscoelastic liquids*, Rheol. Acta**21**(1982), 251-254. MR**669374 (83j:76007)****[32]**M. Renardy, W. J. Hrusa, and J. A. Nohel,*Mathematical problems in viscoelasticity*, Longman, 1987. MR**919738 (89b:35134)****[33]**M. Slemrod,*A hereditary partial differential equation with applications in the theory of simple fluids*, Arch. Rational Mech. Anal.**62**(1976), 303-322. MR**0416245 (54:4320)****[34]**R. Temam,*Navier-Stokes equations. Theory and numerical analysis*, rev. ed., North-Holland, Amsterdam, 1979. MR**603444 (82b:35133)****[35]**J. N. Welch,*On the construction of the Hilbert space**for an operator valued measure*, Vector and Operator Valued Measures and Applications (D. H. Tucker and H. B. Maynard, eds.), Academic Press, New York, 1973. MR**0342999 (49:7743)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
73F15,
45K05,
45N05,
47D05,
47G05

Retrieve articles in all journals with MSC: 73F15, 45K05, 45N05, 47D05, 47G05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1989-0939803-3

Article copyright:
© Copyright 1989
American Mathematical Society