EQUIVALENT CONDITIONS TO THE SPECTRAL DECOMPOSITION PROPERTY FOR CLOSED OPERATORS

I. ERDELYI AND WANG SHENGWANG

Abstract. The spectral decomposition property has been instrumental in developing a local spectral theory for closed operators acting on a complex Banach space. This paper gives some necessary and sufficient conditions for a closed operator to possess the spectral decomposition property.

In the monograph [3] and in a sequel of papers by the authors, a local spectral theory has been built for closed operators on the sole assumption of the spectral decomposition property. As an abstraction of Dunford’s concept of “spectral reduction” [2, p. 1927] and that of Bishop’s “duality theory of type 3” [1], an operator T endowed with the spectral decomposition property produces a spectral decomposition of the underlying space, pertinent to any finite open cover of the spectrum $\sigma(T)$. In this paper we obtain some conditions equivalent to the spectral decomposition property. Some of them generalize results from [4].

1. Preliminaries

Given a Banach space X over the complex field \mathbb{C}, we denote by $C(X)$ the class of closed operators with domain D_f and range in X, and we write $C_d(X)$ for the subclass of the densely defined operators in $C(X)$. For a subset Y of X, Y^\perp denotes the annihilator of Y in X^* and for $Z \subset X^*$, we use the symbol $1^\perp Z$ for the preannihilator of Z in X. For the rest, the terminology and notation conform to that employed in [3].

We shall adopt and adjust some concepts and ideas from Bishop’s “duality theory of type 4” [1, §4]. A couple U_1 and U_2 of a bounded and an unbounded Cauchy domain, related by $U_2 = (U_1)^c$, are referred to as complementary simple sets. W_1 and W_2 are the sets of analytic functions from U_1 to X and from U_2 to X^*, respectively, which vanish at ∞. The seminorms

$$\|f\|_{K_1} = \max\{\|f(\lambda)\| : f \in W_1, \lambda \in K_1, K_1 (\subset U_1) \text{ is compact}\}$$

and

$$\|g\|_{K_2} = \max\{\|g(\lambda)\| : g \in W_2, \lambda \in K_2, K_2 (\subset U_2) \text{ is compact}\}$$

Received by the editors September 15, 1987.
induce a locally convex topology on W_1 and W_2, respectively. For $i = 1, 2$ let V_i be the subset of W_i on which every function can be extended to be continuous on \overline{U}_i. For $f \in V_1$, $g \in V_2$, the norms
\[\|f\|_{V_1} = \sup\{\|f(\lambda)\| : \lambda \in U_1\}, \quad \|g\|_{V_2} = \sup\{\|g(\lambda)\| : \lambda \in U_2\} \]
make $(V_1, \cdot, \|\cdot\|_{V_1})$ and $(V_2, \cdot, \|\cdot\|_{V_2})$ Banach spaces. For $x \in X$, $\mu \in U_1$ and $\lambda \in U_2$, define
\[(1.1) \quad \alpha(x, \mu, \lambda) = (\mu - \lambda)^{-1} x. \]
For fixed $x \in X$ and $\lambda \in U_2$, $\alpha(x, \cdot, \lambda)$ is called an elementary element of V_1. Denote by V the subspace of V_1 which is spanned by the elementary elements of V_1. For $x^* \in X^*$, $\mu \in U_1$ and $\lambda \in U_2$, define
\[(1.2) \quad \alpha(x^*, \mu, \lambda) = (\mu - \lambda)^{-1} x^*. \]
For fixed $x^* \in X^*$ and $\mu \in U_1$, call $\alpha(x^*, \mu, \cdot)$ and elementary element of V_2. For $f \in V_1$ and $g \in V_2$, with continuous extensions to $\Gamma = \partial U_1 = \partial U_2$, endow Γ with the clockwise orientation and ascertain that the bilinear functional
\[(1.3) \quad \Phi(f) = (f, g) = \frac{1}{2\pi i} \int_{\Gamma} \langle f(\lambda), g(\lambda) \rangle d\lambda \]
is jointly continuous.
For $g \in V_2$, (1.3) defines a bounded linear functional Φ on \hat{V}, i.e. $\Phi \in V^*$. For $f = \alpha(x, \cdot, \lambda)$, one obtains
\[(1.4) \quad \Phi(f) = \frac{1}{2\pi i} \int_{\Gamma} (\mu - \lambda)^{-1} (x, g(\mu)) d\mu = (x, g(\lambda)). \]
The last equality holds because $g(\infty) = 0$.

The proof of the following lemma is similar to that of [3, Lemma 9.1].

1.1. Lemma. Let U_1, U_2 be complementary simple sets. With V, V_i, and W_i ($i = 1, 2$), as defined above, there exists a linear manifold Y in W_2 and a norm on Y such that

(i) Y is a Banach space isometrically isomorphic to V^*;
(ii) $V_2 \subset Y$;
(iii) the mappings $V_2 \to Y$ and $Y \to W_2$ are continuous;
(iv) the inner product between V and \hat{V}, defined by (1.3), can be extended to an inner product between V and Y in conjunction with the isometric isomorphism between Y and V^*, as asserted by (i).

2. Some dual properties

For an operator $T \in C_d(X)$, define an operator H on V by
\[D_H = \{ f \in V : Tf(\mu) \in V \}, \quad (Hf)(\mu) = (\mu - T)f(\mu). \]
2.1. Lemma. The operator H is closed and densely defined on V.

Proof. For $f = \alpha(x, \cdot, \lambda)$ with $x \in D_T$, one has $f \in D_H$ and

$$ (Hf)(\mu) = (\mu - \lambda)^{-1}(\mu - T)x = x + (\mu - \lambda)^{-1}(\lambda - T)x. $$

The linear span of all elementary elements being dense in V, the operator H is densely defined.

Let $\{f_n\}$ be a sequence in D_H such that $f_n \to f$ and $Hf_n \to g$, for some functions f and g. T being closed, it follows from

$$ (Hf_n)(\mu) = (\mu - T)f_n(\mu), $$

that $f \in D_H$ and

$$ (Hf)(\mu) = (\mu - T)f(\mu) = g(\mu), \quad \mu \in \overline{U}_1. $$

Thus H is closed. \square

The next lemma defines the dual H^* of H. Henceforth, g will denote a typical element of $V^* = Y$.

2.2. Lemma. The dual operator of H is defined by

$$ (H^*g)(\lambda) = -\lim_{\lambda \to \infty} \lambda g(\lambda) + (\lambda - T^*)g(\lambda), \quad g \in D_{H^*}. $$

Proof. For $f(\mu) = \alpha(x, \mu, \lambda)$ with $x \in D_T$ and $\lambda \in U_2$ fixed, and $g \in D_{H^*}$, (2.1), (1.3) and (1.4) imply

$$ (f, H^*g) = (Hf, g) = (x, g) + (\alpha((\lambda - T)x, \cdot, \lambda), g) = (x, g) + ((\lambda - T)x, g(\lambda)), $$

where x, as a function of $\mu \in \overline{U}_1$, is an element of V_1. It follows from

$$ x = \frac{1}{2\pi i} \int_{\Gamma} (\mu - \lambda)^{-1} x \, d\lambda = \frac{1}{2\pi i} \int_{\Gamma} \alpha(x, \mu, \lambda) \, d\lambda, $$

that $x \in V$, where Γ is a closed C^2-Jordan curve with the clockwise orientation that contains Γ in its interior. Furthermore, with the help of (1.4), one obtains

$$ (x, g) = \frac{1}{2\pi i} \int_{\Gamma} (\alpha(x, \cdot, \lambda), g) \, d\lambda = \frac{1}{2\pi i} \int_{\Gamma} (x, g(\lambda)) \, d\lambda $$

$$ = \lim_{z \to \infty} z \left(-\frac{1}{2\pi i} \int_{\Gamma} (\lambda - z)^{-1} (x, g(\lambda)) \, d\lambda \right) = -\lim_{z \to \infty} z (x, g(z)) $$

$$ = -\lim_{\lambda \to \infty} \lambda (x, g(\lambda)) = \left(x, -\lim_{\lambda \to \infty} \lambda g(\lambda) \right). $$

It follows from (2.3) and (2.4) that

$$ (f, H^*g) = \left(x, -\lim_{\lambda \to \infty} \lambda g(\lambda) \right) + (\lambda - T)x, g(\lambda)) = \left(x, -\lim_{\lambda \to \infty} \lambda g(\lambda) + (\lambda - T)^*g(\lambda) \right). $$
In fact, \(f = \alpha(x, \cdot, \lambda) \) and since \(\langle f, H^* g \rangle \) and \(\langle x, -\lim_{\lambda \to \infty} \lambda g(\lambda) \rangle \) are bounded linear functionals of \(x \), so is \(\langle (\lambda - T)x, g(\lambda) \rangle \). Thus \(g(\lambda) \in D_{T^*} \), for every \(\lambda \in U_2 \) and hence the last equality of (2.5) holds. Now (2.5) combined with (1.3) and (1.4), gives \(\langle f, H^* g \rangle = \langle x, (H^* g)(\lambda) \rangle \) and hence \(H^* \) is expressed by (2.2). \(\Box \)

Define the map \(\tau: V^* \to X^* \) by \(\tau g = \lim_{\lambda \to \infty} \lambda g(\lambda) \). Then \(H^* \), given by (2.2), is expressed by

\[
(H^* g)(\lambda) = -\tau g + (\lambda - T^*) g(\lambda).
\]

2.3. Lemma. Let \(x^* \in X^* \). Then \(x^* \in D_{T^*} \) iff there exists \(g \in D_{H^*} \) such that \(\tau g = x^* \).

Proof. First, assume that there is \(g \in D_{H^*} \) such that \(\tau g = x^* \). Since \(H^* g \in V^* \), the following limit exists

\[
\lim_{\lambda \to \infty} T^* \lambda g(\lambda) = \lim_{\lambda \to \infty} \lambda T^* g(\lambda).
\]

Furthermore, \(\lim_{\lambda \to \infty} \lambda g(\lambda) \) also exists and since \(T \) is closed, we have

\[
x^* = \tau g = \lim_{\lambda \to \infty} \lambda g(\lambda) \in D_{T^*}.
\]

Conversely, for every \(x^* \in D_{T^*} \), the corresponding elementary element \(\alpha(x^*, \mu, \cdot) \) with \(\mu \in U_1 \) fixed, is in \(D_{H^*} \). It follows from (1.2), that

\[
\tau(-\alpha) = -\lim_{\lambda \to \infty} \lambda \alpha(x^*, \mu, \lambda) = x^*
\]

and the proof reaches its conclusion by setting \(g = -\alpha \). \(\Box \)

3. Norms on the dual spaces

We introduce the norm

\[
\|f_1, f_2\|_\eta = (\eta \|f_1\|^2 + \|f_2\|^2)^{1/2}, \quad \eta > 0,
\]

in \(V \oplus V \). This induces the norm

\[
\|(g_1, g_2)\|_\eta = (\eta^{-1} \|g_1\|^2 + \|g_2\|^2)^{1/2}
\]

in \(V^* \oplus V^* \). Let \(G(H) \) and \(G(H^*) \) be the graphs of \(H \) and \(H^* \), respectively. \(G(H) \), as a subspace of \(V \oplus V \), is endowed with the norm

\[
\|(f, Hf)\|_\eta = (\eta \|f\|^2 + \|Hf\|^2)^{1/2}.
\]

It follows from

\[
(G(H))^\perp = \nu G(H^*), \quad \text{where} \quad \nu(g_1, g_2) = (-g_2, g_1),
\]

that \(\nu G(H^*) \) is the dual of \((V \oplus V)/G(H) \). The latter is equipped with the norm

\[
\|(f_1, f_2)\|_\eta = \inf\{\|f_1 - f\|^2 + \|f_2 - Hf\|^2)^{1/2} : f \in D_H\},
\]
where \((f_1, f_2)\) denotes a typical element of \((V \oplus V)/G(H)\). To the norm \((3.2)\), there corresponds the following norm in \(\nu G(H^*)\):

\[
\|(-H^*g, g)\|_\eta = (\eta^{-1} \|H^*g\|^2 + \|g\|^2)^{1/2}.
\]

3.1. **Lemma.** The norm

\[
\|x^*\|_{T^*} = (\|x^*\|^2 + \|Tx^*\|^2)^{1/2}
\]

in \(D_{T^*}\) is equivalent to the norm

\[
\|x^*\|_\eta = \inf\{(\eta^{-1} \|H^*g\|^2 + \|g\|^2)^{1/2} : \tau g = x^*\}.
\]

Furthermore, \(D_{T^*}\) equipped with the norm \((3.3)\) or \((3.4)\) is the dual of a Banach space.

Proof. First, we prove that \(D_{T^*}\) endowed with the norm \((3.4)\) is a Banach space. Let \(\{x^*_n\}\) be a Cauchy sequence with respect to the norm \((3.4)\). Without loss of generality, we may suppose that

\[
\sum_{n=0}^{\infty} \|x^*_{n+1} - x^*_n\|_\eta < \infty, \quad x_0 = 0.
\]

For each \(x_n\), we may choose \(g_n \in D_{H^*}\) such that

\[
(\eta^{-1} \|H^* (g_{n+1} - g_n)\|^2 + \|g_{n+1} - g_n\|^2)^{1/2} \leq 2 \|x^*_{n+1} - x^*_n\|_\eta
\]

and \(\tau g_n = x^*_n\). Relations \((3.5)\) and \((3.6)\) imply that both \(\{g_n\}\) and \(\{H^* g_n\}\) converge. Put \(g = \lim_{n \to \infty} g_n\). \(H^*\) being closed, one has \(g \in D_{H^*}\) and \(H^* g = \lim_{n \to \infty} H^* g_n\). Then Lemma 2.3 implies that \(x^* = \tau g \in D_{T^*}\). Since

\[
\|x^*_n - x^*\|_\eta \leq (\eta^{-1} \|H^*(g_n - g)\|^2 + \|g_n - g\|^2)^{1/2} \to 0 \quad n \to \infty,
\]

it follows that \(D_{T^*}\), endowed with the norm \((3.4)\), is a Banach space.

To show that the norms \((3.3)\) and \((3.4)\) are equivalent, let \(x^* \in D_{T^*}\) and \(g = \alpha(x^*, \mu, \cdot)\) with \(\mu \in U_1\) fixed. Since \(\tau g = x^*\), one has

\[
\|x^*\|_\eta \leq (\eta^{-1} \|H^* g\|^2 + \|g\|^2)^{1/2}
\]

\[
\leq \frac{1}{\delta} (\eta^{-1} (|\mu| \cdot \|x^*\| + \|T^* x^*\|)^2 + \|x^*\|^2)^{1/2},
\]

where \(\delta = \text{dist}(\mu, U_2)\). In view of \((3.7)\), there exists \(K_\eta > 0\) such that

\[
\|x^*\|_\eta \leq K_\eta (\|x^*\|^2 + \|T^* x^*\|^2)^{1/2} = K_\eta \|x^*\|_{T^*}.
\]

\(D_{T^*}\) being complete with respect to both \(\|\cdot\|_\eta\) and \(\|\cdot\|_{T^*}\). \((3.8)\) implies that the two norms are equivalent. \(D_{T^*}\) equipped with the norm \((3.3)\) is isometrically isomorphic to \(\nu G(T^*) = G(T)^+\). Since \(\nu G(T^*)\) is the dual of \(X \oplus X/G(T)\), so is \(D_{T^*}\). □

\(D_{T^*}\) equipped with either of the two norms \((3.3), (3.4)\), will be denoted by \(D\). To obtain a further property of \(\tau\), we need the following.
3.2. **Lemma.** Let Y, Z be Banach spaces and let S be a bounded surjective map of Y onto Z. In Z we define the norm

$$
(3.9) \quad \|z\|_S = \inf\{\|y\|: y \in Y, Sy = z\}, \quad z \in Z.
$$

Then, the corresponding norm in the dual space Z^* is

$$
(3.10) \quad \|z^*\|_{S^*} = \|S^* z^*\|, \quad z^* \in Z^*.
$$

Proof. Let $N(S)$ be the null space of S. Then $N(S)^\perp$ is the dual of $Y/N(S)$. Let $y_0 \in Y$, $z = Sy_0$ and let \tilde{y}_0 be the equivalence class of y_0 in $Y/N(S)$. In terms of the norm (3.9), one has

$$
\|\tilde{y}_0\| = \inf\{\|y_0 - w\|: w \in N(S)\} = \inf\{\|y\|: Sy = z\} = \|z\|_S.
$$

The dual norm of $\|\tilde{y}_0\|$ in $N(S)^\perp$ is the usual norm in Y^*, restricted to $N(S)^\perp$. Note that S^* is a surjective map from Z^* onto $N(S)^\perp$. Therefore, the corresponding norm of $\|\cdot\|_S$ in Z^* is the one expressed by (3.10). \qed

We define an operator K from $\nu G(H^*)$ into D_T, by $K(-H^* g, g) = \tau g$. Let D^* be the dual of D. Then K^*, the dual of K, is an operator from D^* into the dual of $\nu G(H^*)$, i.e., from D^* into $(V^{**} \oplus V^{**})/(\nu G(H^*))^{\perp}$. For every $x \in X$, define a continuous linear functional ψ on D, by

$$
(3.11) \quad \psi(x^*) = \langle x, x^* \rangle, \quad x^* \in D.
$$

3.3. **Lemma.** The linear functional ψ (3.11) is a zero functional only if $x = 0$.

Proof. Assume that $\psi = 0$. Then $\langle x, x^* \rangle = 0$ for every $x^* \in D$. Thus, we have $\langle 0, -T^* x^* \rangle + \langle x, x^* \rangle = 0$, $x^* \in D$, equivalently, $(0, x) \in G(T^*)$, i.e., $(0, x) \in G(T)$. Consequently, $x = 0$. \qed

In view of Lemma 3.3, we may consider X as a subset of D^*. In the following, we shall have a closer look at $K^* x$ for $x \in X$.

For $x^* \in D$ and fixed $\mu \in U_1$, put $g = \alpha(x^*, \mu, \cdot)$. Then, one obtains

$$
\langle K^* x(-H^* g, g) \rangle = \langle x, K(-H^* g, g) \rangle = \langle x, \tau g \rangle = \langle x, x^* \rangle = \frac{1}{2\pi i} \int_\Gamma (\mu - \lambda)^{-1} \langle x, x^* \rangle d\lambda = \langle x, g \rangle,
$$

where Γ has a clockwise orientation.

We know that $(0, x)$ is an element of $X \oplus X$. We may also consider $(0, x)$ as an element of $V \oplus V$ and hence $(0, x)$ can be assumed to be an element of $V^{**} \oplus V^{**}$.

Thus, we have

$$
\langle x, g \rangle = \langle (0, x), (-H^* g, g) \rangle = \langle (0, x)^\sim, (-H^* g, g) \rangle,
$$

where $(0, x)^\sim$ is the equivalence class of $(0, x)$ in $(V^{**} \oplus V^{**})/(\nu G(H^*))^{\perp}$. Consequently, $K^* x = (0, x)^\sim$.

Denote by $(0, x)^\sim$ the equivalence class of $(0, x)$ in $(V \oplus V)/G(H)$.
3.4. Lemma. Let J be the natural embedding of $(V \oplus V)/G(H)$ into
$$(V^{**} \oplus V^{**})/(\nu G(H^*))^\perp.$$
Then $J(0, x) = (0, x)^\sim$.

Proof. For any $(-H^* g, g) \in \nu G(H^*)$, one has
$$\langle (0, x), (-H^* g, g) \rangle = \langle (0, x), (H^* g, g) \rangle = \langle -H^* g, g \rangle, (0, x) \rangle$$
$$= \langle (H^* g, g), (0, x)^\sim \rangle.$$
Note that while in $\langle (0, x), (-H^* g, g) \rangle$, $(0, x) \in V \oplus V$; in $\langle -H^* g, g \rangle$, $(0, x)$ is considered an element of $V^{**} \oplus V^{**}$. It follows from the
above equalities that $J(0, x) = (0, x)^\sim$. □

In particular, Lemma 3.4 implies
$$|| (0, x) \rangle = || (0, x) \rangle ||.$$
On the other hand, $(0, x)^\sim = 0$ implies $(0, x) \in G(H)$ and the latter implies
$x = 0$. Accordingly, we may define the following norm on X:
$$|| x ||_{\eta} = || (0, x) \rangle || = \inf \{ (\eta || f ||^2 + || x - Hf ||^2)^{1/2} : f \in D_H \}.$$
In view of Lemma 3.4, we may consider $K^# x = (0, x)^\sim$ as a point of
$(V \oplus V)/G(H)$.

3.5. Lemma. The norm $|| \cdot ||_{\eta}$, defined by (3.13), is the restriction of the norm on D^*.

Proof. The space $(V^{**} \oplus V^{**})/(\nu G(H^*))^\perp$ is the conjugate of $\nu G(H^*)$ and K
is an operator from $\nu G(H^*)$ into D. It follows from Lemma 3.2, that the dual
norm on D^* is given by
$$|| x^\# || = || K^# x^\# ||_{**}$$
where $x^\# \in D^*$ and $|| \cdot ||_{**}$ is the norm on $V^{**} \oplus V^{**}/[\nu G(H^*)]^\perp$. If $x^\# = x \in X$, then the norm (3.14) becomes $|| x ||_{\eta} = || K^# x || = ||(0, x)^\sim ||$ and it
follows from (3.12) that the restriction of the norm (3.14) to X is that given
by (3.13). □

4. A DUALITY PROPERTY OF SOME SPECTRAL-TYPE MANIFOLDS

Define the following linear manifolds in X:

$N = \{ x \in X : \text{for every } \varepsilon > 0, \text{ there exists } f \in D_H \text{ with } || x - Hf || < \varepsilon \}$,
$M = \{ x^\# \in D : \text{there exists } g \in D_H, \text{ such that } H^* g = 0, \tau g = x^\# \}.$

4.1. Lemma. The manifolds N and M have the following characterizations:

(4.1) $N = \{ x \in X : || x ||_{\eta} \to 0 \text{ as } \eta \to 0 \},$
(4.2) $M = \{ x^\# \in D : || x^\# ||_{\eta} \leq R \text{ for } n > 0 \text{ and } R \text{ depends on } x^\# \}.$
Proof. First, we establish (4.1). Let \(x \in N \). Since, for every \(\varepsilon > 0 \), there is \(f \in D_H \) such that \(\|x - Hf\| < \varepsilon \), it follows from (3.13) that \(\lim_{\eta \to 0} \|x\|_\eta \leq \varepsilon \). \(\varepsilon \) being arbitrary, it follows that \(\lim_{\eta \to 0} \|x\|_\eta = 0 \).

Conversely, suppose that \(\|x\|_\eta \to 0 \) as \(\eta \to 0 \). Then, for every \(\varepsilon > 0 \), there exists \(\eta > 0 \) such that \(\|x\|_\eta < \varepsilon \) and hence \(\|x - Hf\| < \varepsilon \) for some \(f \in D_H \).

Next, we prove (4.2). It is a straightforward consequence of (3.4) that

\[
M \subset \{x^* \in D : \|x^*\|_\eta \text{ is bounded for } \eta > 0\}.
\]

Conversely, suppose that \(x^* \in D \) and \(\|x^*\|_\eta \) is bounded for \(\eta > 0 \), i.e. there exists \(R > 0 \) such that

\[
\inf\{(n\|H^* g\|^2 + \|g\|^2)^{1/2}, \tau g = x^*\} < R, \quad n = 1, 2, \ldots.
\]

Then, for every \(n \), there exists \(g_n \in D_H \) satisfying conditions

\[
(n\|H^* g\|^2 + \|g\|^2) \leq R^2 \quad \text{and} \quad \tau g_n = x^*.
\]

In view of (4.3), the sequences \(\{g_n\} \) and \(\{H^* g_n\} \) are bounded and hence the sequence \(\{(H^* g_n, g_n)\} \) is bounded. Consequently, \(\{(H^* g_n, g_n)\} \) has a cluster point \((h, g) \) in \(V^* \oplus V^* \), with respect to the weak* topology of \(V^* \oplus V^* \). Since \(vG(H^*) \) is closed with respect to the same topology, one has \(\{h, g\} \in vG(H^*) \), i.e. \(h = -H^* g \). It follows from \(\|H^* g_n\| \leq R^2/n \) that \(\|H^* g\| = 0 \).

On the other hand, for every \(x \in X \), \(K^* x = (0, x) \in (V \oplus V)/G(H) \).
Therefore,

\[
\langle x, x^* \rangle = \langle x, \tau g_n \rangle = \langle x, K(-H^* g_n, g_n) \rangle = \langle K^* x, (-H^* g_n, g_n) \rangle.
\]

Since \((-H^* g, g) \) is also a cluster point of \(\{(-H^* g_n, g_n)\} \) in the weak* topology of \(vG(H^*) \), the latter being the dual space of \((V \oplus V)/G(H) \), we have

\[
\langle x, x^* \rangle = \langle K^* x, (-H^* g, g) \rangle = \langle x, K(-H^* g, g) \rangle = \langle x, \tau g \rangle.
\]

Thus \(\tau g = x^* \) and hence \(x^* \in M \). Expression (4.2) is obtained. \(\Box \)

4.2. Theorem. \(N \) and \(M \), as defined above, are related by

\[
N^\perp = \overline{M^w},
\]

where \(^w \) denotes the weak* closure in \(X^* \).

Proof. Let \(x \in N \) and \(x^* \in M \). It follows from Lemmas 3.5 and 4.1, that

\[
|\langle x, x^* \rangle| \leq \|x\|_\eta \cdot \|x^*\|_\eta \to 0 \quad \text{as } \eta \to 0.
\]

Therefore, \(N^\perp \supseteq \overline{M^w} \).

Next, we prove the opposite inclusion. For \(x \notin N \) (\(x \in X \)), Lemma 4.1 implies that there exists \(\eta_n \downarrow 0 \) such that

\[
\|x\|_{\eta_n} > C > 0
\]

for some constant \(C \). In view of (4.4), we can find \(x^*_n \in D \) such that \(\|x^*_n\|_{\eta_n} \leq 1 \) and \(|\langle x, x^*_n \rangle| > C \). The sequence \(\{\eta_n\} \) being nonincreasing, so is the norm
THE SPECTRAL DECOMPOSITION PROPERTY FOR CLOSED OPERATORS

(3.4), i.e. \(\| x_n^* \|_{H_n} \leq \| x_n^* \|_{\eta_n} \). Consequently, \(\{ x_n^* \} \) is bounded in the norm \(\| \cdot \|_{\eta_i} \)-topology. For every \(n \), there exists \(g_n \in D_{H^*} \) such that

\[
\eta_n^{-1} \| H^* g_n \|^2 + \| g_n \|^2 \leq 2 \| x_n^* \|^2_{\eta_n}.
\]

Thus \(\{(x_n^*, g_n, H^* g_n)\} \) is bounded in \(D \oplus G(H^*) \). By Lemma 3.1 and the previous paragraph, \(D \oplus G(H^*) \) is the dual of a Banach space and \(\{(x_n^*, g_n, H^* g_n)\} \) has a cluster point \((x^*, g, H^* g) \) in the weak* topology of \(D \oplus G(H^*) \). Since (3.11) defines a continuous linear functional on \(D \) for every \(x \in X \), it follows that \(x^* \) is also a cluster point of \(\{x_n^*\} \) in the weak* topology of \(X^* \). Now it follows from the inequalities

\[
(x, x_n^*) = (x, \tau g_n) = (x, K(-H^* g_n, g_n)) = (K^* x, (-H^* g_n, g_n))
\]

that, for \(x \in X \), one has

\[
(x, x^*) = (K^* x, (-H^* g, g)) = (x, K(-H^* g, g)) = (x, \tau g).
\]

Thus \(x^* = \tau g \). By the definition of \(M \), \(x^* \in M \). Hence \(N \subseteq M \), or equivalently, \(N \subseteq \overline{M} \). □

5. The main theorem

We recall the definition of the central topic of this paper.

5.1. Definition. An operator \(T \in C(X) \) is said to have the spectral decomposition property (SDP) if, for every finite open cover \(\{G_i\}_{i=0}^n \) of \(C \) (or \(\sigma(T) \), where \(G_0 \) is a neighborhood of infinity (i.e. its complement \(G_0^c \) is compact in \(C \)), there exists a system \(\{Y_i\}_{i=0}^n \) of invariant subspaces under \(T \) satisfying the following conditions:

\[
\begin{align*}
(\text{I}) & \quad X_i \subset D_T \text{ if } G_i \ (1 \leq i \leq n) \text{ is relatively compact;} \\
(\text{II}) & \quad \sigma(T|X_i) \subset G_i \ (0 \leq i \leq n); \\
(\text{III}) & \quad X = \sum_{i=0}^n X_i.
\end{align*}
\]

The theory based on this property is greatly simplified by the fact [3, Corollary 6.3] that \(T \) has the SDP iff it has the two-summand spectral decomposition property that corresponds to \(n = 1 \). The theory also involves the concept of the spectral manifold \(X(T, H) = \{x \in X : \sigma(x, T) \subset H\} \), where \(H \subset C \) and \(\sigma(x, T) \) is the local spectrum at \(x \in X \), and the concept of the \(T \)-bounded spectral maximal space \(\Xi(T, F) \) for \(F \subset C \) compact. The \(T \)-bounded spectral maximal space \(\Xi(T, F) \) is associated to \(X(T, F) \) [3, Theorem 4.34] by

\[
X(T, F) = \Xi(T, F) \oplus X(T, \emptyset) \quad \text{and} \quad \sigma(T|\Xi(T, F)) = \sigma(T|X(T, F)).
\]

The given operator \(T \) may enjoy two specific properties:

\(T \) is said to have property \((\beta) \) [1, Definition 8 and 3, Definition 5.5] if, for any sequence \(\{f_n : G \to D_T\} \) of analytic functions, the condition \((\lambda - T)f_n(\lambda) \to 0 \) (as \(n \to \infty \)) in the strong topology of \(X \) and uniformly on every compact
subset of G implies that $f_n(\lambda) \to 0$ in the strong topology of X and uniformly on every compact subset of G.

T is said to have property (κ) [3, Definition 5.4] if T has the single valued extension property and $X(T,F)$ is closed for every closed F.

Property (β) implies property (κ), as follows from [3, Proposition 5.6].

5.2. Lemma. Suppose that $S \in C(X^*)$. Then S is the dual of a closed and densely defined operator $T \in C_d(X)$ iff $G(S)$ is closed in the weak* topology of $X^* \oplus X^*$ and D_S is total.

Proof. Only if: Suppose that S is the dual of $T \in C_d(X)$, i.e. $S = T^*$. The equality

$$\nu G(S) = \nu G(T^*) = (G(T))^\perp$$

implies $G(S)$ is closed in the weak* topology of $X^* \oplus X^*$. To prove that D_S is total, let $x \in X$ and $\langle x, x^* \rangle = 0$ for all $x^* \in D_S$. Then

$$\langle x, x^* \rangle = 0 = \langle 0, Sx^* \rangle$$

is equivalent to

$$0 \oplus x \in \perp (\nu G(S)) = G(T)$$

and hence $x = T(0) = 0$, so D_S is total.

If: Assume that $G(S)$ is closed in the weak* topology of $X^* \oplus X^*$ and D_S is total. Letting $W = \perp (\nu G(S))$, one has $W = \perp \nu G(S)$. Let $0 \oplus y \in W$. For every $x^* \in D_S$, one has $0 \oplus y \perp (-Sx^*) \oplus x^*$, or equivalently,

$$(5.1) \quad 0 = \langle 0, Sx^* \rangle = \langle y, x^* \rangle \quad \text{for all } x^* \in D_S.$$

D_S being total, (5.1) implies that $y = 0$ and hence W is the graph of an operator T. W being closed, T is a closed operator.

To show that T is densely defined, let $x^* \in X^*$ satisfy condition

$$\langle x, x^* \rangle = 0 \quad \text{for all } x \in D_T.$$

Then

$$x \oplus Tx \perp x^* \oplus 0 \quad \text{for all } x \in D_T$$

and hence $x^* \oplus 0 \in (G(T))^\perp = W^\perp = \nu G(S)$. Therefore $x^* = -S(0) = 0$ and hence T is densely defined. □

5.3. Lemma. Suppose that $T \in C(X)$ and Y is invariant under T. Then T/Y is closed iff $G(T/Y)$ is topologically isomorphic to $G(T)/G(T|Y)$.

Proof. Only if: Assume that T/Y is closed. For $x \in D_T$, the following mapping $x \oplus Tx + G(T|Y) \to (x \oplus Y) + (Tx + y)$ is bijective from $G(T)/G(T|Y)$ onto $G(T/Y)$. It follows from the inequalities

$$\|x \oplus Tx + G(T|Y)\| = \inf\{\|x \oplus Tx + y \oplus Ty\|: y \in D_T|y\}$$

$$\geq \inf\{\|(x + y_1) \oplus (Tx + y_2)\|: y_1, y_2, \in Y\}$$

$$= \|(x + Y) \oplus (Tx + Y)\|$$
and from the open mapping theorem that $G(T/Y)$ and $G(T)/G(T|Y)$ are topologically isomorphic.

If: Assume that $G(T/Y)$ and $G(T)/G(T|Y)$ are topologically isomorphic. Then $G(T/Y)$ is a Banach space and hence it is closed in $X/Y \oplus X/Y$. Thus T/Y is closed. □

5.4. Lemma. Given $T \in C_d(X)$, let $Z \subset D_T$ be an invariant subspace under T. Then

(i) Z^\perp is invariant under T^*;

(ii) T^*/Z^\perp is the dual of $T|Z$ iff T^*/Z^\perp is closed.

Proof. (i) is evident.

(ii): If T^*/Z^\perp is the dual of $T|Z$ then clearly T^*/Z^\perp is closed. Conversely, assume that T^*/Z^\perp is closed. Then, it follows from Lemma 5.3 that $G(T^*/Z^\perp)$ is topologically isomorphic to $G(T^*)/G(T^*|Z^\perp)$. The following equalities

$$vG(T^*) = (G(T))^\perp; \quad G(T^*|Z^\perp) = G(T^*) \cap (Z^\perp \oplus Z^\perp)$$

imply that both $G(T^*)$ and $G(T^*|Z^\perp)$ are closed in the weak* topology of $X^* \oplus X^*$. Then, it follows easily that $G(T^*/Z^\perp)$ is closed in the weak* topology of $X^*/Z^\perp \oplus X^*/Z^\perp$.

It follows from Lemma 5.2 that D_T is total and hence D_{T^*/Z^\perp} is total. Quoting again Lemma 5.2, it follows that T^*/Z^\perp is the dual of a densely defined closed operator $U \in C_d(Z)$.

The assumption $Z \subset D_T$ implies that $T|Z$ is bounded. Let $(x^*)^\sim$ be the equivalence class of $x^* \in X^*$ in X^*/Z^\perp. Then, for every $x^* \in D_T$, and $x \in D_U$, one has

$$\langle Tx, x^* \rangle = \langle x, T^*x^* \rangle = \langle x, (T^*/Z^\perp)(x^*)^\sim \rangle = \langle Ux, (x^*)^\sim \rangle = \langle Ux, x^* \rangle.$$

Since D_{T^*} is total, (5.2) implies that $Tx = Ux$, for each $x \in D_U$. Since $T|Z$ is bounded and U is a densely defined closed operator, it follows that $U = T|Z$ and hence T^*/Z^\perp is the dual of $T|Z$. □

Now we are in a position to prove our main theorem.

5.5. Theorem. Given $T \in C_d(X)$, the following assertion are equivalent:

(i) T has the SDP;

(ii) for every pair of open disks G, H with $\overline{G} \subset H$, there exist invariant subspaces X_G and X_H such that

$$X = X_G + X_H; \quad X_H \subset D_T;$$

$$\sigma(T|X_H) \subset H \quad \text{and} \quad \sigma(T|X_G) \subset G^c;$$

(iii) for every pair of open disks G, H with $\overline{G} \subset H$, there exist invariant subspaces Y, Z such that

(a) $\sigma(T|Y) \subset G^c$; T/Y is bounded and $\sigma(T/Y) \subset H$;
(b) $Z \subset D^T$, $\sigma(T|Z) \subset H$, T/Z is closed and $\sigma(T|Z) \subset G^c$;

(c) $T^*|Z^\perp$ is closed;

(iv) both T and T^* have property (β);

(v) T has property (β) and T^* has property (κ).

Proof. The proof will be carried out through the following scheme of implications:

(i) \Rightarrow (ii) \Rightarrow (iv)

(i) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (i).

(i) \Rightarrow (ii) is evident.

(i) \Rightarrow (iii): Given T with the SDP, let G, H be open disks with $\overline{G} \subset H$ and let L be an open set satisfying inclusions $\overline{G} \subset L \subset L \subset H$. For $Y = X(T,G^c)$ and $Z = \Xi(T,L)$, we have $Y = X + Z$. Then, in view of [3, Proposition 3.4 and Corollary 3.3], conditions (a) and (b) of (iii) are satisfied. Furthermore, it follows from (i) and [3, Theorem 9.8 (II,ii)], that

$$Z^\perp = X^*(T^*,L^c).$$

Consequently, (iii, (c) follows from [3, Proposition 3.4].

(ii) \Rightarrow (iv): Let G and H be a pair of open disks with $\overline{G} \subset H$. There exists invariant subspaces X_G and X_H satisfying conditions (5.3) and (5.4). It follows from [3, Proposition 3.4] that T/X_G is bounded and

$$\sigma(T/X_G) \subset \sigma(T|X_H) \cup \sigma(T|X_G \cap X_H) \subset H.$$

Then [3, Theorem 5.8] implies that T has property (β).

To show that T^* has property (β), let $\{f^*_n\}$ be a sequence of D_T^*-valued analytic functions defined on an open set $G \subset \mathbb{C}$ such that

$$(\lambda - T^*)f^*_n(\lambda) \to 0 \quad (n \to \infty)$$

uniformly on every compact subset of G in the strong topology of X^*. Without loss of generality, we may suppose that $G = \{\lambda: |\lambda| < r\}$ for some $r > 0$ and that $K \subset G$ is compact. Let G_0 and H_0 be open disks satisfying inclusions

$$K \subset G_0 \subset \overline{G}_0 \subset H_0 \subset \overline{H}_0 \subset G.$$

Since T has property (β), the subspaces $X(T,G_0^c)$, $\Xi(T,H_0)$ are defined. In view of conditions (5.3) and (5.4) applied to the open disks G_0, H_0, one obtains

$$X = X(T,G_0^c) + \Xi(T,H_0).$$

Since $K \subset \rho(T|X(T,G_0^c))$, for $\lambda \in K$ and $x \in X(T,G_0^c)$, one has

$$|\langle x, f^*_n(\lambda) \rangle| = |\langle R(\lambda;T)|X(T,G_0^c)\rangle x, (\lambda - T^*)f^*_n(\lambda) \rangle| \leq M_0 \|\lambda - T^*\| f^*_n(\lambda) \cdot \|x\|,$$

where $M_0 > 0$ is a constant independent of $\lambda \in K$. Then for every $\varepsilon > 0$, there exists $N_0 > 0$ such that

$$|\langle x, f^*_n(\lambda) \rangle| \leq \varepsilon \|x\|, \quad \text{for all } \lambda \in K \text{ as } n > N_0.$$
Let $C_0 = \{\lambda : |\lambda| = r_0\} \subset G$ with \overline{H}_0 in the interior of the disk bounded by C_0, for some $r_0 > 0$. Then $C_0 \subset \rho(T|\Xi(T, \overline{H}_0))$ and hence for $\lambda \in C_0$ and $x \in \Xi(T, \overline{H}_0)$ one has

$$|\langle x, \hat{f}_n^\ast(\lambda) \rangle | = |\langle R(\lambda; \Xi(T, \overline{H}_0))x, (\lambda - T^\ast)\hat{f}_n^\ast(\lambda) \rangle | \leq M_1\| (\lambda - T^\ast)\hat{f}_n^\ast(\lambda) \| ,$$

where $M_1 > 0$ is a constant independent of $\lambda \in C_0$. Then there is N_1 such that

$$|\langle x, \hat{f}_n^\ast(\lambda) \rangle | \leq \frac{\text{dist}(K, C_0)}{r_0}\|x\| \quad \text{for all } \lambda \in C_0 \text{ as } n > N_1.$$

It follows from the Cauchy integral formula that

$$(5.7) \quad |\langle x, \hat{f}_n^\ast(\lambda) \rangle | \leq \frac{1}{2\pi} \int_{|\xi| = r_0} \frac{|\langle x, \hat{f}_n^\ast(\lambda) \rangle |}{|\xi - \lambda|} \, |d\xi| \leq \varepsilon \|x\| ,$$

for all $\lambda \in K$ as $n > N_1$.

The decomposition (5.5) and the inequalities (5.6), (5.7) imply that there is a constant $M > 0$ such that

$$|\langle x, \hat{f}_n^\ast(\lambda) \rangle | \leq \varepsilon M\|x\| \quad \text{for all } x \in X, \lambda \in K \text{ as } n > \max\{N_0, N_1\}.$$

Thus it follows that $\{\hat{f}_n^\ast(\lambda)\}$ converges to zero uniformly on K in the strong topology of X^\ast and hence T^\ast has property (β).

(iii) \Rightarrow (iv): Condition (iii,a) and [3, Theorem 5.8] imply that T has property (β). By Lemma 5.4, $Z^\ast = Z^\perp$ is invariant under T^\ast and then

$$\sigma(T^\ast|Z^\perp) = \sigma(T/Z) \subset G^c.$$

Again, by Lemma 5.4, T^\ast/Z^\perp is bounded and hence so is $T|Z$. We have

$$\sigma(T^\ast/Z^\perp) = \sigma(T|Z) \subset H.$$

Thus [3, Theorem 5.8] applies again and states that T^\ast has property (β).

(iv) \Rightarrow (v) is evident.

(v) \Rightarrow (i): Let $\{G_0, G_1\}$ be an open cover of C, where G_0 is a neighborhood of infinity and G_1 is relatively compact. Let U_1, U_2 be a couple of Cauchy domains with U_1 bounded, U_2 unbounded such that $U_2 = (\overline{U_1})^c$. Furthermore, we request that U_2 verify inclusions

$$G_1^c \subset U_2 \subset \overline{U_2} \subset G_0.$$

Next, we define the linear manifolds N and M as in §4. We claim that the following inclusions hold:

$$(5.8) \quad \begin{align*}
(a) \quad N &\subset \overline{X}(T, G_0), \\
(b) \quad \overline{M}^\omega &\subset \Xi^\ast(T^\ast, G_1).
\end{align*}$$

To prove (5.8a), let $x \in N$. For $n = 1, 2, 3, \ldots$ choose $f_n \in D_H$ such that $\|x - H f_n\| < 1/n$. Since T has property (β), $\{f_n\}$ converges uniformly on compact sets in U_1. Put $f(\lambda) = \lim_{n \to \infty} f_n(\lambda)$, for $\lambda \in U_1$. Then $f(\lambda) \in D_T$ and $(\lambda - T)f(\lambda) = x$, $\lambda \in U_1$. Consequently,

$$\sigma(x, T) \subset \overline{U_1}^c = \overline{U_2} \subset G_0$$

and (5.8a) follows.
To prove (5.8b), let $x^* \in M$. There exists $g \in D_{H^*}$ such that $H^* g = 0$ and $\tau g = x^*$, or equivalently,
\[(\lambda - T^*) g(\lambda) = \tau g = x^*, \quad \lambda \in U_2.\]
Thus it follows that
\[\sigma(x^*, T^*) \subset U_2 \subset \overline{G_1}\]
and hence $x^* \in X^*\left(T^*, \overline{G_1}\right)$. Since $g(\lambda) \in V^*$ implies $\lim_{\lambda \to -\infty} \|g(\lambda)\| = 0$, it follows from [3, Lemma 5.11] that $x^* \in \Xi^*\left(T^*, \overline{G_1}\right)$. Therefore, $M \subset \Xi^*\left(T^*, \overline{G_1}\right)$. Now [3, Theorem 9.4] implies that $\Xi^*\left(T^*, \overline{G_1}\right)$ is weak* closed and hence $M' \subset \Xi^*\left(T^*, \overline{G_1}\right)$. Now (5.8) and Theorem 4.2 imply
\[(5.9) \quad (X(T, G_0))' \subset N_1 = M' \subset \Xi^*\left(T^*, \overline{G_1}\right).\]

With G_0 fixed, we may choose a sequence of open sets $\{G_n\}$ such that $\bigcap_{n=1}^\infty G_n = G_0 = F_0$ and $\{G_0, G_n\}$ covers C for every n. Then (5.9) implies that
\[\left(\{X(T, G_0)\}\right)' \subset \Xi^*\left(T^*, \overline{G_n}\right) \quad \text{for every } n.\]
Consequently,
\[(5.10) \quad \left(\left\{X(T, G_0)\right\}\right)' \subset \bigcap_{n=1}^\infty \Xi^*\left(T^*, \overline{G_n}\right) = \Xi^*\left(T^*, F_0\right).\]
Combining (5.10) with the evident inclusion $(X(T, G_0))' \supset \Xi^*\left(T^*, F_0\right)$, one finds
\[(5.11) \quad (X(T, G_0))' = \Xi^*\left(T^*, F_0\right).\]
Since $\Xi^*\left(T^*, F_0\right)$ is invariant under T^*, (5.11) implies that $X(T, G_0)$ is invariant under T. In fact, for every $x \in X(T, \overline{G_0}) \cap D_T$ and $x^* \in \Xi^*\left(T^*, F_0\right)$, one has $\langle Tx, x^* \rangle = \langle x, T^* x^* \rangle = 0$ so that $X(T, G_0)$ is invariant under T. Furthermore, we shall show that
\[(5.12) \quad \sigma(T, X(T, G_0)) \subset \overline{G_0}.\]
Let $x \in X(T, G_0)$ and choose a sequence $\{x_n\} \subset X(T, G_0)$ such that $x_n \to x$. Let $x_n(\cdot)$ denote the local resolvent of T at x_n. By property β, the convergence
\[\left(\lambda - T\right)x_n(\lambda) = x_n \to x, \quad \lambda \in \left(\overline{G_0}\right)^c\]
implies $x_n(\lambda) \to f(\lambda)$ and $(\lambda - T)f(\lambda) = x$.
Therefore $\sigma(x, T) \subset \overline{G_0}$. On the other hand, for every $\lambda \in \left(\overline{G_0}\right)^c$, we have
\[\sigma(x_n(\lambda), T) = \sigma(x_n, T) \subset G_0,\]
so $x_n(\lambda) \in X(T, G_0)$ and hence $x(\lambda) \in X(T, G_0)$ for $\lambda \in \left(\overline{G_0}\right)^c$. Then, by a known property [5, see also 3, Proposition 2.7], inclusion (5.12) follows.
Now we are in a position to show that T has the SDP. Let $\{G_0, G_1\}$ be an open cover of C with G_0 a neighborhood of infinity and G_1 relatively compact.
Let H_0 be another open neighborhood of infinity such that $\overline{G_1} \cap \overline{H_0} = \emptyset$ and $H_0 \subset G_0$. Then $\widetilde{G}_0 = G_1 \cup H_0$ is a neighborhood of infinity and in virtue of (5.11) one writes

$$X(T,G_0) = \mathbb{E}^*(T^*,F_0),$$

where $\tilde{F}_0 = (G_0)^c$ and both $\mathbb{E}^*(T^*,F_0)$, $\mathbb{E}^*(T^*,\tilde{F}_0)$ are closed in the weak* topology of X^*. Similarly, $\mathbb{E}^*(T^*,F_0 \cup \tilde{F}_0)$ is closed in the weak* topology. Since $F_0 \cap \tilde{F}_0 = \emptyset$ ($F_0 = G_0^c$), we have

$$\mathbb{E}^*(T^*,F_0 \cup \tilde{F}_0) = \mathbb{E}^*(T^*,F_0) \oplus \mathbb{E}^*(T^*,\tilde{F}_0).$$

Set $Z^* = \mathbb{E}^*(T^*,F_0 \cup \tilde{F}_0)$.

Let $x \in X$, $x^* \in Z^*$ and denote by x^*_0 the projection of x^* onto $\mathbb{E}^*(T^*,F_0)$, in conjunction with (5.13). The linear functional x_0 on Z^*, defined by

$$(5.14) \quad \langle x_0, x^* \rangle = \langle x, x^*_0 \rangle$$

is continuous in the weak* topology. Use the Hahn-Banach theorem on locally convex spaces to extend x_0 to a linear functional on X^*, that is continuous in the weak* topology. Therefore $x_0 \in X$. Since the projection x^*_0 of $x^* \in \mathbb{E}^*(T^*,\tilde{F}_0)$ onto $\mathbb{E}^*(T^*,F_0)$ is zero, it follows from (5.14) that $\langle x_0, x^* \rangle = 0$ for $x^* \in \mathbb{E}^*(T^*,\tilde{F}_0)$. Thus, $x_0 \in \mathbb{E}^*(T^*,\tilde{F}_0) = (X(T,G_0))$. Put $x_1 = x - x_0$ and for $x^* \in \mathbb{E}^*(T^*,F_0)$, use (5.14) to obtain $\langle x_1, x^* \rangle = 0$. Then $x_1 \in \mathbb{E}^*(T^*,F_0) = \overline{X(T,G_0)}$. Since $x \in X$ is arbitrary, the representation $x = x_0 + x_1$ with $x_0 \in X(T,G_0)$, $x_1 \in X(T,G_0)$ implies

$$X = \overline{X(T,G_0)} + X(T,G_0).$$

As regarding $X(T,G_0)$, it follows from (5.12) that

$$\sigma(T|X(T,G_0)) \subset \overline{G_0} = G_1 \cup H_0.$$

Having $G_1 \cap H_0 = \emptyset$ and G_1 relatively compact, the functional calculus for closed operators produces the following decomposition

$$X(T,G_0) = Y_1 \oplus Y_2,$$

$$\sigma(T|Y_1) \subset \overline{G_1}, \quad \sigma(T|Y_2) \subset H_0.$$

Since $H_0 \subset G_0$, $Y_2 \subset \overline{X(T,G_0)}$, (5.15) and (5.16) imply

$$X = Y_1 + \overline{X(T,G_0)}.$$

In view of (5.16b), (5.12), (5.17a) and (5.18), T has the SDP.

Remark. A more restrictive version of property (β) is used in [6, Lemma 4.6]. Given $T \in C(X)$, a function $f: G \to D_T$ defined on an open subset G of the compactified complex plane C_∞, is said to be T-analytic if both f and Tf are
analytic on G. T has property (β), in this stronger version, if for any sequence of T-analytic functions $\{f_n : G \to D_T\}$, the condition $(\lambda - T)f_n(\lambda) \to 0$ (as $n \to \infty$) in the strong topology of X and uniformly on every compact subset of G implies that $f_n(\lambda) \to 0$ in the strong topology of X and uniformly on every compact subset of G.

It follows from the definition of the operator H and Lemma 2.2 in §2 that both $Tf(\mu)$ and $T^*g(\lambda)$ are analytic. Consequently, Theorem 5.5 holds if we use the above-mentioned stronger version of property (β) in (iv) and (v).

REFERENCES

Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122

Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260