Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Summability of Hermite expansions. I


Author: S. Thangavelu
Journal: Trans. Amer. Math. Soc. 314 (1989), 119-142
MSC: Primary 42C10; Secondary 42A24
DOI: https://doi.org/10.1090/S0002-9947-1989-99923-2
Part II: Trans. Amer. Math. Soc. (1) (1989), 143-170
MathSciNet review: 958904
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the summability of one-dimensional Hermite expansions. We prove that the critical index for the Riesz summability is $ 1/6$. We also prove analogues of the Fejér-Lebesgue theorem and Riemann's localisation principle.


References [Enhancements On Off] (What's this?)

  • [1] R. Askey, Norm inequalities for some orthogonal series, Bull. Amer. Math. Soc. 72 (1966), 803-823. MR 0198114 (33:6273)
  • [2] R. Askey and I. I. Hirschman, Jr., Mean summability for ultraspherical polynomials, Math. Scand. 12 (1963), 167-177. MR 0164198 (29:1497)
  • [3] R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math. 87 (1965), 695-708. MR 0182834 (32:316)
  • [4] R. Campbell, Determination effective de toutes les moyennes de Cesàro d'ordre entier pour les series de polynomes orthogonaux comprenant ceux de Laguerre et de Hermite, C.R. Acad. Sci. Paris 243 (1956), 882-885. MR 0079669 (18:125d)
  • [5] A. Erdelyi et al., Asymptotic forms for Laguerre polynomials, Golden Jubilee volume of the Indian Math. Soc.
  • [6] D. Ernst, Über die konvergenz der $ (C,1)$-Mittel von Fourier-Laguerre-Riehen, Compositio Math. 21 (1969), 81-101. MR 0241894 (39:3231)
  • [7] G. Freud, On weighted simultaneous polynomial approximation, Studia Sci. Math. Hungar. 7 (1972), 337-342. MR 0330844 (48:9181)
  • [8] -, On polynomial approximation with respect to general weights, Functional Analysis and its Applications, Lecture Notes in Math., vol. 399, Springer-Verlag, Berlin and New York, 1974, pp. 149-179. MR 0404924 (53:8722)
  • [9] G. Freud and S. Knapowsky, On linear processes of approximation. III, Studia Math. 25 (1965), 373-383. MR 0181863 (31:6089)
  • [10] J. J. Gergen, Summability of double Fourier series, Duke Math. J. 3 (1937), 133-148. MR 1545976
  • [11] L. Hormander, On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators, Some Recent Advances in the Basic Sciences, Yeshiva Univ., New York, 1966. MR 0257589 (41:2239)
  • [12] E. Kogbetliantz, Sur les moyennes arithmetiques des series-noyaux des developpement en series d'Hermite et de Laguerre et sur celles de les series-noyaux drivees term a terme, J. Math. Phys. 14 (1935), 37-99.
  • [13] L. Lorch, The Lebesgue constants for Jacobi series. I, Proc. Amer. Math. Soc. 10 (1959), 756-761. MR 0109981 (22:864)
  • [14] C. Markett, Norm estimates for Cesàro means of Laguerre expansions, Proc. Conf. on Approximations and Function Spaces, Gdansk, 1979, North-Holland, Amsterdam, 1981, pp. 419-435. MR 649449 (83f:42018)
  • [15] -, Mean Cesaro summability of Laguerre expansions and norm estimates with shifted parameter, Anal. Math. 8 (1982), 19-37. MR 662701 (83j:40004)
  • [16] -, Norm estimates for $ (C,\delta)$ means of Hermite expansions and bounds for $ {\delta _{{\text{eff}}}}$, Acta Math. Hungar. 43 (1984), 187-198. MR 733853 (85j:42049)
  • [17] B. Muckenhoupt, Mean convergence of Hermite and Laguerre series. I, Trans. Amer. Math. Soc. 147 (1970), 419-431. MR 0256051 (41:711)
  • [18] -, Mean convergence of Hermite and Laguerre series. II, Trans. Amer. Math. Soc. 147 (1970), 433-460. MR 0256051 (41:711)
  • [19] F. Olver, Asymptotics and special functions, Academic Press, New York, 1974. MR 0435697 (55:8655)
  • [20] J. Peetre, Remark on eigenfunction expansions for elliptic operators with constant coefficients, Math. Scand. 15 (1964), 83-92. MR 0178252 (31:2510)
  • [21] E. L. Poiani, Mean Cesàro summability of Laguerre and Hermite series, Trans. Amer. Math. Soc. 173 (1972), 1-31. MR 0310537 (46:9635)
  • [22] H. Pollard, The mean convergence of orthogonal series. I, Trans. Amer. Math. Soc. 62 (1947), 387-403. MR 0022932 (9:280d)
  • [23] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1971. MR 0290095 (44:7280)
  • [24] -, Beijing lectures on Fourier analysis, Ann. of Math. Studies, no. 112, Princeton Univ. Press, Princeton, N.J., 1986.
  • [25] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971. MR 0304972 (46:4102)
  • [26] G. Szego, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., Amer. Math. Soc., Providence, R.I., 1967. MR 0310533 (46:9631)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42C10, 42A24

Retrieve articles in all journals with MSC: 42C10, 42A24


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-99923-2
Keywords: Hermite expansion, summability, Riesz means, oscillatory integrals
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society