Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Boundary layers in approximate solutions


Author: K. T. Joseph
Journal: Trans. Amer. Math. Soc. 314 (1989), 709-726
MSC: Primary 35L40; Secondary 35B25, 35C20, 35K10
DOI: https://doi.org/10.1090/S0002-9947-1989-0929660-3
MathSciNet review: 929660
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the development of boundary layers in parabolic approximate solutions of the initial boundary value problem for linear strictly hyperbolic systems of equations in one space variable. We also analyse the boundary layer behaviour.


References [Enhancements On Off] (What's this?)

  • [1] C. Bardos, D. Brezis, and H. Brezis, Perturbations singulières et prolongments maximaux $ D$ opérateurs positifs, Arch. Rational Mech. Anal. 53 (1973), 69-100. MR 0348247 (50:745)
  • [2] C. Bardos and J. Rauch, Maximal positive B.V.P. as limits of singular perturbation problems, Trans. Amer. Math. Soc. 270 (1982), 377-408. MR 645322 (84j:35012)
  • [3] R. Courant and D. Hilbert, Methods of mathematical physics, vol. 2, Wiley, 1975.
  • [4] A. Friedman, Partial differential equations, Holt, Rinehart and Winston, 1969. MR 0445088 (56:3433)
  • [5] K. T. Joseph, Boundary layers in approximate solutions of initial boundary value problems for hyperbolic conservation laws, Ph. D. thesis, New York Univ., June 1987.
  • [6] M. I. Visik and L. A. Lyusternik, Regular degeneracy and B.V.P. for linear differential equations with small parameter, Amer. Math. Soc. Transl. (2) 20 (1962), 239-364. MR 0136861 (25:322)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35L40, 35B25, 35C20, 35K10

Retrieve articles in all journals with MSC: 35L40, 35B25, 35C20, 35K10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0929660-3
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society