Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Lorentz spaces that are isomorphic to subspaces of $ L\sp 1$


Author: Carsten Schütt
Journal: Trans. Amer. Math. Soc. 314 (1989), 583-595
MSC: Primary 46E30; Secondary 46B25
MathSciNet review: 974527
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show which Lorentz spaces are isomorphic to subspaces of $ {L^1}$ and which are not.


References [Enhancements On Off] (What's this?)

  • [1] Jean Bretagnolle and Didier Dacunha-Castelle, Application de l’étude de certaines formes linéaires aléatoires au plongement d’espaces de Banach dans des espaces 𝐿^{𝑝}, Ann. Sci. École Norm. Sup. (4) 2 (1969), 437–480 (French). MR 0265930
  • [2] J. Creekmore, Type and cotype in Lorentz 𝐿_{𝑝𝑞} spaces, Nederl. Akad. Wetensch. Indag. Math. 43 (1981), no. 2, 145–152. MR 707247
  • [3] D. Dacunha-Castelle, Variables aléatoires échangeables et espaces d'Orlicz, Séminaire Maurey-Schwartz 1974-75, exposés 10 et 11, Ecole Polytéchnique, Paris.
  • [4] Ed Dubinsky, A. Pełczyński, and H. P. Rosenthal, On Banach spaces 𝑋 for which Π₂(\cal𝐿_{∞},𝑋)=𝐵(\cal𝐿_{∞},𝑋), Studia Math. 44 (1972), 617–648. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, VI. MR 0365097
  • [5] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press, 1934.
  • [6] W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 19 (1979), no. 217, v+298. MR 527010, 10.1090/memo/0217
  • [7] Stanisław Kwapień and Carsten Schütt, Some combinatorial and probabilistic inequalities and their application to Banach space theory, Studia Math. 82 (1985), no. 1, 91–106. MR 809774
  • [8] -, Some combinatorial and probabilistic inequalities and their application to Banach space theory. II, preprint.
  • [9] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in 𝐿_{𝑝}-spaces and their applications, Studia Math. 29 (1968), 275–326. MR 0231188
  • [10] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR 0500056
  • [11] Y. Raynaud and C. Schütt, Some results on symmetric subspaces of 𝐿₁, Studia Math. 89 (1988), no. 1, 27–35. MR 951082
  • [12] Haskell P. Rosenthal, On the subspaces of 𝐿^{𝑝} (𝑝>2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273–303. MR 0271721
  • [13] Shlomo Reisner, A factorization theorem in Banach lattices and its application to Lorentz spaces, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 1, viii, 239–255 (English, with French summary). MR 613037

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E30, 46B25

Retrieve articles in all journals with MSC: 46E30, 46B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0974527-8
Article copyright: © Copyright 1989 American Mathematical Society