A uniform algebra of analytic functions on a Banach space
Authors:
T. K. Carne, B. Cole and T. W. Gamelin
Journal:
Trans. Amer. Math. Soc. 314 (1989), 639659
MSC:
Primary 46J15; Secondary 46B20, 46G20
MathSciNet review:
986022
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be the uniform algebra on the unit ball of a dual Banach space generated by the weakstar continuous linear functionals. We focus on three related problems: (i) to determine when is a tight uniform algebra; (ii) to describe which functions in are approximable pointwise on by bounded nets in ; and (iii) to describe the weak topology of regarded as a subset of the dual of . With respect to the second problem, we show that any polynomial in elements of can be approximated pointwise on by functions in of the same norm. This can be viewed as a generalization of Goldstine's theorem. In connection with the third problem, we introduce a class of Banach spaces, called spaces, with the property that if is a bounded sequence in such that for any homogeneous analytic function on , then in norm. We show for instance that a Banach space has the Schur property if and only if it is a space with the DunfordPettis property.
 [1]
E.
L. Arenson, Gleason parts and the Choquet boundary of the algebra
of functions on a convex compactum, Zap. Nauchn. Sem. Leningrad.
Otdel. Mat. Inst. Steklov. (LOMI) 113 (1981),
204–207, 268 (Russian, with English summary). Investigations on
linear operators and the theory of functions, XI. MR 629841
(83d:46059)
 [2]
Brian
J. Cole and T.
W. Gamelin, Tight uniform algebras and algebras of analytic
functions, J. Funct. Anal. 46 (1982), no. 2,
158–220. MR
660185 (83h:46065), http://dx.doi.org/10.1016/00221236(82)900349
 [3]
B.
J. Cole and T.
W. Gamelin, Weakstar continuous homomorphisms and a decomposition
of orthogonal measures, Ann. Inst. Fourier (Grenoble)
35 (1985), no. 1, 149–189. MR 781784
(86m:46051)
 [4]
David
W. Dean, The equation
𝐿(𝐸,𝑋**)=𝐿(𝐸,𝑋)** and the
principle of local reflexivity, Proc. Amer.
Math. Soc. 40
(1973), 146–148. MR 0324383
(48 #2735), http://dx.doi.org/10.1090/S0002993919730324383X
 [5]
Joseph
Diestel, Sequences and series in Banach spaces, Graduate Texts
in Mathematics, vol. 92, SpringerVerlag, New York, 1984. MR 737004
(85i:46020)
 [6]
Joe
Diestel, A survey of results related to the DunfordPettis
property, Proceedings of the Conference on Integration, Topology, and
Geometry in Linear Spaces (Univ. North Carolina, Chapel Hill, N.C., 1979)
Contemp. Math., vol. 2, Amer. Math. Soc., Providence, R.I., 1980,
pp. 15–60. MR 621850
(82i:46023)
 [7]
T. W. Gamelin, Uniform algebras, 2nd ed., Chelsea, New York, 1984.
 [8]
T.
W. Gamelin, Uniform algebras on plane sets, Approximation
theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973)
Academic Press, New York, 1973, pp. 101–149. MR 0338784
(49 #3548)
 [9]
J. Lindenstrauss and L. Tsafriri, Classical Banach spaces, Vol. 1, SpringerVerlag, Berlin, 1977.
 [10]
J. E. Littlewood, On bounded bilinear forms in an infinite number of variables, Quart. J. Math. 1 (1930), 164174.
 [11]
Leopoldo
Nachbin, Topology on spaces of holomorphic mappings,
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 47, SpringerVerlag
New York Inc., New York, 1969. MR 0254579
(40 #7787)
 [12]
A.
Pełczyński, A property of multilinear
operations, Studia Math. 16 (1957), 173–182. MR 0093698
(20 #221)
 [13]
Gilles
Pisier, Factorization of linear operators and geometry of Banach
spaces, CBMS Regional Conference Series in Mathematics, vol. 60,
Published for the Conference Board of the Mathematical Sciences,
Washington, DC; by the American Mathematical Society, Providence, RI, 1986.
MR 829919
(88a:47020)
 [14]
H. R. Pitt, A note on bilinear forms, J. London Math. Soc. 11 (1936), 174180.
 [1]
 E. L. Arenson, Gleason parts and the Choquet boundary of a function algebra on a convex compactum, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 113 (1981), 204207. MR 629841 (83d:46059)
 [2]
 B. Cole and T.W. Gamelin, Tight uniform algebras, J. Funct. Anal. 46 (1982), 158220. MR 660185 (83h:46065)
 [3]
 , Weakstar continuous homomorphisms and a decomposition of orthogonal measures, Ann. Inst. Fourier (Grenoble) 35 (1985), 149189. MR 781784 (86m:46051)
 [4]
 D. W. Dean, The equation and the principle of local reflexivity, Proc. Amer. Math. Soc. 40 (1973), 146148. MR 0324383 (48:2735)
 [5]
 J. Diestel, Sequences and series in Banach spaces, SpringerVerlag, Berlin, 1984. MR 737004 (85i:46020)
 [6]
 , A survey of results related to the DunfordPettis property, Proc. Conference on Integration, Topology and Geometry in Linear Spaces, W. Graves (ed.), Contemp. Math., Vol. 2, Amer. Math. Soc., Providence, R.I., 1980, pp. 1560. MR 621850 (82i:46023)
 [7]
 T. W. Gamelin, Uniform algebras, 2nd ed., Chelsea, New York, 1984.
 [8]
 , Uniform algebras on plane sets, Approximation Theory, G. G. Lorentz (ed.), Academic Press, 1973, pp. 100149. MR 0338784 (49:3548)
 [9]
 J. Lindenstrauss and L. Tsafriri, Classical Banach spaces, Vol. 1, SpringerVerlag, Berlin, 1977.
 [10]
 J. E. Littlewood, On bounded bilinear forms in an infinite number of variables, Quart. J. Math. 1 (1930), 164174.
 [11]
 L. Nachbin, Topology on spaces of holomorphic mappings, SpringerVerlag, Berlin, 1969. MR 0254579 (40:7787)
 [12]
 A. Pelczynski, A property of multilinear operations, Studia Math. 16 (1957), 173182. MR 0093698 (20:221)
 [13]
 G. Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conf. Ser. in Math., No. 60, Amer. Math. Soc., Providence, R.I., 1986. MR 829919 (88a:47020)
 [14]
 H. R. Pitt, A note on bilinear forms, J. London Math. Soc. 11 (1936), 174180.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
46J15,
46B20,
46G20
Retrieve articles in all journals
with MSC:
46J15,
46B20,
46G20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198909860220
PII:
S 00029947(1989)09860220
Article copyright:
© Copyright 1989
American Mathematical Society
