A uniform algebra of analytic functions on a Banach space

Authors:
T. K. Carne, B. Cole and T. W. Gamelin

Journal:
Trans. Amer. Math. Soc. **314** (1989), 639-659

MSC:
Primary 46J15; Secondary 46B20, 46G20

DOI:
https://doi.org/10.1090/S0002-9947-1989-0986022-0

MathSciNet review:
986022

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the uniform algebra on the unit ball of a dual Banach space generated by the weak-star continuous linear functionals. We focus on three related problems: (i) to determine when is a tight uniform algebra; (ii) to describe which functions in are approximable pointwise on by bounded nets in ; and (iii) to describe the weak topology of regarded as a subset of the dual of . With respect to the second problem, we show that any polynomial in elements of can be approximated pointwise on by functions in of the same norm. This can be viewed as a generalization of Goldstine's theorem. In connection with the third problem, we introduce a class of Banach spaces, called -spaces, with the property that if is a bounded sequence in such that for any -homogeneous analytic function on , then in norm. We show for instance that a Banach space has the Schur property if and only if it is a -space with the Dunford-Pettis property.

**[1]**E. L. Arenson,*Gleason parts and the Choquet boundary of a function algebra on a convex compactum*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**113**(1981), 204-207. MR**629841 (83d:46059)****[2]**B. Cole and T.W. Gamelin,*Tight uniform algebras*, J. Funct. Anal.**46**(1982), 158-220. MR**660185 (83h:46065)****[3]**-,*Weak-star continuous homomorphisms and a decomposition of orthogonal measures*, Ann. Inst. Fourier (Grenoble)**35**(1985), 149-189. MR**781784 (86m:46051)****[4]**D. W. Dean,*The equation**and the principle of local reflexivity*, Proc. Amer. Math. Soc.**40**(1973), 146-148. MR**0324383 (48:2735)****[5]**J. Diestel,*Sequences and series in Banach spaces*, Springer-Verlag, Berlin, 1984. MR**737004 (85i:46020)****[6]**-,*A survey of results related to the Dunford-Pettis property*, Proc. Conference on Integration, Topology and Geometry in Linear Spaces, W. Graves (ed.), Contemp. Math., Vol. 2, Amer. Math. Soc., Providence, R.I., 1980, pp. 15-60. MR**621850 (82i:46023)****[7]**T. W. Gamelin,*Uniform algebras*, 2nd ed., Chelsea, New York, 1984.**[8]**-,*Uniform algebras on plane sets*, Approximation Theory, G. G. Lorentz (ed.), Academic Press, 1973, pp. 100-149. MR**0338784 (49:3548)****[9]**J. Lindenstrauss and L. Tsafriri,*Classical Banach spaces*, Vol. 1, Springer-Verlag, Berlin, 1977.**[10]**J. E. Littlewood,*On bounded bilinear forms in an infinite number of variables*, Quart. J. Math.**1**(1930), 164-174.**[11]**L. Nachbin,*Topology on spaces of holomorphic mappings*, Springer-Verlag, Berlin, 1969. MR**0254579 (40:7787)****[12]**A. Pelczynski,*A property of multilinear operations*, Studia Math.**16**(1957), 173-182. MR**0093698 (20:221)****[13]**G. Pisier,*Factorization of linear operators and geometry of Banach spaces*, CBMS Regional Conf. Ser. in Math., No. 60, Amer. Math. Soc., Providence, R.I., 1986. MR**829919 (88a:47020)****[14]**H. R. Pitt,*A note on bilinear forms*, J. London Math. Soc.**11**(1936), 174-180.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46J15,
46B20,
46G20

Retrieve articles in all journals with MSC: 46J15, 46B20, 46G20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1989-0986022-0

Article copyright:
© Copyright 1989
American Mathematical Society