Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Radially symmetric solutions to a superlinear Dirichlet problem in a ball with jumping nonlinearities


Authors: Alfonso Castro and Alexandra Kurepa
Journal: Trans. Amer. Math. Soc. 315 (1989), 353-372
MSC: Primary 35J65; Secondary 35B05
DOI: https://doi.org/10.1090/S0002-9947-1989-0933323-8
MathSciNet review: 933323
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ p,\varphi :[0,T] \to R$ be bounded functions with $ \varphi > 0$. Let $ g:{\mathbf{R}} \to {\mathbf{R}}$ be a locally Lipschitzian function satisfying the superlinear jumping condition: (i) $ {\lim _{u \to - \infty }}(g(u)/u) \in {\mathbf{R}}$ (ii) $ {\lim _{u \to \infty }}(g(u)/{u^{1 + \rho }}) = \infty $ for some $ \rho > 0$, and (iii) $ {\lim _{u \to \infty }}{(u/g(u))^{N/2}}(NG(\kappa u) - ((N - 2)/2)u \cdot g(u)) = \infty $ for some $ \kappa \in (0,1]$ where $ G$ is the primitive of $ g$. Here we prove that the number of solutions of the boundary value problem $ \Delta u + g(u) = p(\left\Vert x\right\Vert) + c\varphi (\left\Vert x\right\Vert)$ for $ x \in {{\mathbf{R}}^N}$ with $ \left\Vert x\right\Vert < T,u(x) = 0$ for $ \left\Vert x\right\Vert = T$ tends to $ + \infty $ when $ c$ tends to $ + \infty $. The proofs are based on the "energy" and "phase plane" analysis.


References [Enhancements On Off] (What's this?)

  • [1] A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (1972), 231-246. MR 0320844 (47:9377)
  • [2] A. Castro and A. Kurepa, Energy analysis of a nonlinear singular differential equation and applications, Rev. Colombiana Mat. 21 (1987), 155-166. MR 968385 (89j:34083)
  • [3] -, Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball, Proc. Amer. Math. Soc. 101 (1987), 57-64. MR 897070 (88j:35058)
  • [4] A. Castro and R. Shivaji, Multiple solutions for a Dirichlet problem with jumping nonlinearities, Trends in Theory and Practice of Nonlinear Analysis, V. Lakshmikantham (ed.), North-Holland, 1985. MR 817476
  • [5] -, Multiple Solutions for a Dirichlet problem with jumping nonlinearities II, J. Math. Anal. Appl. 133 (1988), 509-528. MR 954725 (89e:34031)
  • [6] A. Castro and A. C. Lazer, On periodic solutions of weakly coupled systems of differential equations, Boll. Un. Mat. Ital. (5) 18-B (1981), 733-742. MR 641732 (83b:34046)
  • [7] D. G. Costa and D. G. De Figueiredo, Radial solutions for a Dirichlet problem in a ball, J. Differential Equations 60 (1985), 80-89. MR 808258 (87i:35069)
  • [8] J. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597. MR 0477445 (57:16972)
  • [9] A. Lazer and P. J. McKenna, On the number of solutions of nonlinear Dirichlet problem, J. Math. Anal. Appl. 84 (1981), 282-294. MR 639539 (83e:35050)
  • [10] -, On a conjecture related to the number of solutions of a nonlinear Dirichlet problem, Proc. Roy. Soc. Edinburgh Sect. A 95 (1983), 275-283. MR 726879 (86g:34028)
  • [11] -, Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues, Comm. Partial Differential Equations 10 (1985), 107-150. MR 777047 (86f:35025)
  • [12] D. Lupo, S. Solimini and P. N. Srikanth, Multiplicity results for an o.d.e. problem with even nonlinearity, Quad. Matematici (II), no. 112, Dicembre 1985.
  • [13] B. Ruf and S. Solimini, On a class of superlinear Sturm-Liouville problems with arbitrarily many solutions, SIAM J. Math. Anal. 17 (1986), 761-771. MR 846387 (87g:34023)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J65, 35B05

Retrieve articles in all journals with MSC: 35J65, 35B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1989-0933323-8
Keywords: Dirichlet problem, superlinear jumping nonlinearity, singular differential equation, radially symmetric solutions
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society